Бас редакторы
х.г.д., проф., КР УГА академигі
М.Ж. Жұрынов

Редакция аласы:
Адекенов С.М. проф., академик (Қазақстан) (бас ред. өрінбасары)
Бенберин В.В., проф., академик (Қазақстан)
Березин В.Э., проф., корр.-мүшесі (Қазақстан)
Величкин В.И., проф., корр.-мүшесі (Ресей)
Вольдемар Вуйцик проф. (Польша)
Елешев Р.Е., проф., академик (Қазақстан)
Жамбакин Қ.Ж., проф., академик (Қазақстан)
Иванов Н.П., проф., академик (Қазақстан)
Идолев М.И. проф., академик (Тяжікстан)
Кригер Виктор проф. (Германия)
Кененбаев С.Б., проф., академик (Қазақстан)
Леска Богуслава проф. (Польша)
Локшин В.И. проф., академик (Қазақстан)
Неклюдов И.М. проф., академик (Украина)
Нур Изур Удзир проф. (Малайзия)
Нуркоштан Т.С., проф., корр.-мүшесі (Қазақстан)
Перини Стефано проф. (Улбритания)
Потапов В.А. проф. (Украина)
Прокопович Полина проф. (Улбритания)
Ramazanov T.С. проф., академик (Қазақстан)
Раманкулов Е.М., проф., корр.-мүшесі (Қазақстан)
Садықулов Т., проф., академик (Қазақстан)
Семенов В.Г., проф., академик (Россия)
Сикорска Марек проф., (Польша)
Такибаев Н.Ж. проф., академик (Қазақстан), бас ред. өрінбасары
Тутаралиев Р.А., проф., академик (Қазақстан)
Чечин Л.М. проф., корр.-мүшесі (Қазақстан)
Энджун Гао проф. (Кытай)

«Қазақстан Республикасы Үлттық ғылым академиясының баяндалары»
ISSN 2518-1483 (Online),
ISSN 2224-5227 (Print)

Мениншектенуші: «Қазақстан Республикасының Үлттық ғылым академиясы» Республикалық қоғамдық бірлестігі
(Алматы к.).
Қазақстан Республикасының Акпарат және қоғамдық даму министрлігінің Акпарат комитетінде 29.07.2020 ж.
берілген № KZ93VPY00025418 мерзімінде басылып тіркейінің қойылу тұрақы түрлік.
Такырыптары баяты: наноматериалдар алу, биотехнология және экология саласындағы бірнеше зерттеу нәтижелерін жариялау;
Мерзімділігі: жылына 6 рет.
Тиражы: 500 дана.
Редакциялық мекенжайы: 050010, Алматы қ., Шевченко кош., 28; 219, 220 бол.; тел.: 272-13-19, 272-13-18,

© Қазақстан Республикасының Үлттық ғылым академиясы, 2020

REPORTS
OF NATIONAL ACADEMY OF SCIENCES OF THE
REPUBLIC OF KAZAKHSTAN

Editor in chief
doctor of chemistry, professor, academician of NAS RK
M.Zh. Zhurinov

Editorial board:
Adekenov S.M. prof., academician (Kazakhstan) (deputy editor in chief)
Benberin V.V., prof., academician (Kazakhstan)
Berezin V.Ye., prof., corr. member. (Kazakhstan)
Velichkin V.I. prof., corr. member (Russia)
Voitsik Valdemar prof. (Poland)
Eleshev R.E., prof., academician (Kazakhstan)
Zhambakin K.Zh., prof., academician (Kazakhstan)
Ivanov N.P., prof., academician (Kazakhstan)
Iholov M.I. prof., academician (Tadjikistan)
Krieger Viktor prof. (Germany)
Kenenbayev S.B., prof., academician (Kazakhstan)
Leska Boguslava prof. (Poland)
Lokshin V.N. prof., academician (Kazakhstan)
Nekludov I.M. prof., academician (Ukraine)
Nur Izura Udzir prof. (Malaysia)
Nurgozhin T.S., prof., corr. member. (Kazakhstan)
Perni Stephano prof. (Great Britain)
Potapov V.A. prof. (Ukraine)
Prokopovich Polina prof. (Great Britain)
Ramankulov E.M., prof., corr. member. (Kazakhstan)
Sadykulov T., prof., academician (Kazakhstan)
Semenov V.G., prof., academician (Russia)
Sikorski Marek prof., (Poland)
Ramazanov T.S. prof., academician (Kazakhstan)
Takibayev N.Zh. prof., academician (Kazakhstan), deputy editor in chief
Urazaliev R.A., prof., academician (Kazakhstan)
Kharin S.N. prof., academician (Kazakhstan)
Kharun Parlar prof. (Germany)
Chechin L.M. prof., corr. member (Kazakhstan)
Endzhun Gao prof. (China)

Reports of the National Academy of Sciences of the Republic of Kazakhstan.
ISSN 2224-5227
ISSN 2518-1483 (Online),
ISSN 2224-5227 (Print)

Owner: RPA "National Academy of Sciences of the Republic of Kazakhstan" (Almaty).
The certificate of registration of a periodical printed publication in the Committee of information of the Ministry of

Thematic scope: publication of original research results in the field of obtaining nanomaterials, biotechnology and ecology.

Periodicity: 6 times a year.
Circulation: 500 copies.

Editorial address: 28, Shevchenko str., of. 219, 220, Almaty, 050010, tel. 272-13-19, 272-13-18,

© National Academy of Sciences of the Republic of Kazakhstan, 2020

ASSESSMENT OF THE INTEGRATED CHITINASE GENE STABILITY IN WHEAT LINES AFTER BIOBALLISTIC TRANSFORMATION

Abstract. The synthesis of PR-proteins (pathogenesis related proteins), the most studied of which are chitinases and β-1,3-glucanases, occurs in response to infection with pathogens in plants. Information about the exact role of individual PR proteins within plant immunity makes it possible to use certain specific antifungal proteins for the development of transgenic plants with increased resistance to fungal diseases. At the same time, it is important not only to obtain a plant with the desired trait, but also to fix in it the stable expression of the transferred gene and the inheritance of the acquired trait in generations.

Herein we have studied the stability of the chitinase gene insertion in T1, T2 and T3 generations of transformed wheat lines obtained by the method of cis-gene transfer. Primary transformed regenerant plants were obtained as a result of bioballistic transformation of the chitinase gene into immature wheat germ of Saratovskaya 29 and Kazakhstanskaya 19 varieties. Following screening of regenerant plants by PCR for the presence of the target gene made it possible to select 6 lines presumably carrying the insert based on variety Saratovskaya 29 and 2 lines based on variety Kazakhstanskaya 19.

The seed material of the selected regenerant plants was cultivated in soil conditions and the seeds of the T1 generation were obtained. DNA amplification of 8 selected lines St-29№25, St-29№43, St-29№44, St-29№33, St-29№26, St-29№35, Kz-19№1, Kz-19№2 with specific primers revealed insert-carrying lines, partially cleaved lines and lines with a high degree of insert instability. According to the results of the T2 and T3 generations PCR analysis, a complete absence of insertion in the St-29№35 and St-29№33 lines was revealed, a partial cleavage of the trait in the St-29№43 and Kz-19№2 lines was revealed, and the stable inheritance of the chitinase gene in four lines St-29№25, St-29№44, St-29№26 and Kz-19№1 was confirmed. These lines were selected as promising for in-depth study of their resistance to fungal diseases and further replication.

Key words: transformed plants, DNA, wheat chitinase gene, insert stability.

Introduction. The modern level of biological technologies development, and in particular, genetic engineering, allows to perform targeted modifications in the genome of living organisms. This approach has found wide application in research aimed at adding the desired properties to any agricultural plant without changing its nutritional value.

One of the most important and critically difficult moments in obtaining plants with new features was the selection of an effective method for introducing foreign genes.

The discovery of a natural transformation system using soil Ti-plasmids - an ideal natural vector - was a breakthrough in the transformation of plant cells. However, recently, the method of bioballistic
transformation is increasingly used to transfer the "necessary" information and obtain plants with improved intrinsic properties, which allows to introduce exclusively target plant genes into the genome and does not require the participation of bacterial DNA. Nowadays bioballistics is one of the most effective methods for transforming not only monocotyledonous, but at the same time it is also successfully used on dicotyledonous plants. Callus and suspension cultures, cultivated immature embryos, and embryogenic pollen are usually used as the starting material for transformation. Monocotyledonous plants as corn, rice, barley, and dicotyledonous plants such as tobacco, potatoes, beets, soybeans, rapeseed, alfalfa, tomatoes, carrots, cabbage, grapes were transformed with a bioballistic gun.\[1, 2]\.

Since the early 2000s, it has been proposed to divide genetically modified organisms into groups depending on the source of transgenes.\[3-6\]. Organisms the genome of which have been introduced with genes of the same species or species with their own regulatory elements with which they can interbreed are called cisgenic or intragenic. With this type of transformation, the gene is introduced with the regulatory regions of foreign genes. In this regard, it is believed that cisgenic plants are not genetically modified, although they are obtained by genetic engineering methods. Plants obtained by introducing constructs that alter the expression of plant genes by triggering the process of RNA interference are also referred to as cisgenic plants. To date, there are known cisgenic soybean lines (Treus™, Plenish™) with a modified composition of fatty acids in the seeds and resistance to herbicides based on sulfonylurea, tomatoes (Huafan No. 1) with delayed maturation, glyphosate-resistant corn lines (GA1 and its derivatives)\[2\]. Currently, transgenic technologies are increasingly used to increase the resistance of varieties and hybrids to environmental stressors, for example, to the action of various pathogens - viruses, bacteria, fungi and insects\[7-8\].

Wheat is the world's primary food crop. However, it is one of the last crops to be genetically transformed, and despite numerous field trials, genetically modified wheat has not yet been grown commercially.

Numerous protocols for the transformation of wheat have been developed, but today its efficiency is significantly lower than that of other cereals\[9\] due to the large (17000 Mb) and complex (hexaploid) genome and genotype-dependent reactions of wheat tissue cultures can lead to silencing of transgenes\[10\]. Nonetheless, particle bombardment is a reliable and well-used wheat transformation protocol\[11\], although it suffers from the lack of complex transgenic integration schemes such as DNA positioning / copying or fragmentation during bombardment.\[12\]. Moreover, identification and maintenance of regenerated callus without contamination for a certain period of time is complicated as well\[13\]. When developing and producing new plants by the bioballistic transformation method, some parameters such as the selection of plasmid, wheat genotypes and the composition of the medium for cultivating explants and regenerant plants are considered\[14\].

As a result of bioballistics, a successful transformation of Triticum monococcum L. has already been carried out and plants resistant to the herbicide phosphinothricin have been obtained. Analysis of the expression of marker genes and treatment of regenerant plants with herbicides showed that the gfp and bar genes are stably integrated into the genome of Triticum monococcum and the acquired trait is inherited over several generations.\[15\].

An attempt was made to overcome the susceptibility of soft wheat Fusarium graminearum by introducing the rice chitinase gene (Cht-2) by bombardment of immature wheat embryos.

The incorporation of Cht-2 into the genome of the transformants was confirmed by dot blot analysis and the evaluation of the transformants by PCR assay using specific primers. The transformation efficiency (number of transgenic plants / number of embryos) composed 6.01%. The biochemical characteristics of the transformants were studied and it was determined that the content of total protein, phenolic compounds and the activity of the antioxidant enzymes peroxidase and catalase significantly decreased in new plants, as well as under stress conditions caused by infection with F. graminearum, the activity of phenylalanine ammonia lyase and chitinase increased significantly compared to non-transgenic plants.\[16\].

In response to infection with phytopathogens - viruses, bacteria, fungi and insects, PR-proteins (pathogenesis related proteins) are synthesized\[17-19\]. The most studied of these are chitinases and P-1,3-glucanases, which inhibit the growth of certain types of bacteria and fungi. These enzymes hydrolyze the main components of the cell wall - chitin and P-1,3-glucan. In addition, chitinases and P-1,3-glucanases are encoded by single genes, which prompts interest in them.\[17, 18, 20, 21\].
The determined role of PR proteins in plants immunity enables to use anti-fungal proteins for the development of transgenic plants with increased resistance to fungal diseases. Such plants have already been obtained and have been observed to be resistant to fungal pathogens. [16, 22-26].

The aim of this work is to study the inheritance stability of the chitinase gene insertion in transformed wheat lines of T1, T2, and T3 generations obtained by the method of cisgenic bioballistics.

Materials and methods. The objects of the study were transformed lines of soft wheat *Triticum aestivum* based on Saratovskaya 29 and Kazakhstanskaya 19 varieties of T1, T2, and T3 generations obtained by the method of bioballistic transformation, and DNA samples isolated from these plants. In all experiments, non-transformed wheat plants of Saratovskaya 29 and Kazakhstanskaya 19 varieties was used as the control.

DNA isolation from transformed and non-transformed (control) plants was carried out from 100 mg of leaf plates of 2 - 3 week old seedlings using a GeneJET Plant Genomic DNA Purification Mini Kit (Thermo Fisher Scientific).

The presence of the target chitinase gene insert of was determined by PCR in a reaction volume of 20 μl, with the addition of 2 μl DNA, 2 μl HotTaq x10 buffer (Sileks, Russia), 2 mM MgCl2, 0.2 mM dNTP, direct (ACC CTG TTG TTT GGT GTT ACT TCT GC) and reverse (GCA GTA GCC CCA GGA GTA GG) primers - 10 pmol each, and 1 unit. HotTaq DNA polymerase (Sileks, Russia) on Mastercycler ep gradient S (Eppendorf, Germany) in the following mode: initial denaturation at 95 °C 15 min; (95 °C - 60 sec; 58°C – 60 sec; 72°C – 60 sec) – 35 cycles; 72°C – 5min.

Amplification products were separated by electrophoresis in 1% agarose gel in 0.5 x TBE buffer at a voltage of 15 V/cm for 30 min. After electrophoresis, the gel was stained with a solution of ethidium bromide (1 μg / ml), followed by visualization in ultraviolet light on a GelDoc device (Bio-Rad, USA) in transmitted ultraviolet light at a wavelength of 260 to 360 nm.

Results. Wheat regenerant plants of the Saratovskaya 29 and Kazakhstanskaya 19 varieties presumably carrying an insert of the chitinase gene were obtained as a result of several series of bioballistic cisgenic transformation of immature embryos. Transformation was performed with genetic constructs with the wheat chitinase gene (Chit) applied to gold particles using a ballistic device Biolistic Particle Delivery System PDS-1000/He (Bio-Rad) according to the manufacturer's protocol and according to the established method [27].

The transformed regenerant plants were grown in soil under the conditions of a culture light room to the state of a ripe ear. Further studies and determination of the inheritance stability of the insert were carried out on lines that had no visible defects during cultivation, had a sufficient amount of seed material for planting, and, the most important criterion, had a confirmed insertion of the target chitinase gene according to the results of preliminary PCR analyzes. The collected seed material of six lines № 25, 26, 33, 35, 43 and 44 of regenerant plants based on the Saratovskaya 29 variety and two lines №1 and №2 of the Kazakhstanskaya 19 variety was planted in the soil and plants of the T1 generation were obtained. In all further studies, plants of the original varieties were planted in parallel as a control.

The plants was evaluated according to such parameters as plant height, lodging, flowering and heading periods. In general, according to the results of all visual observations, no visible differences from the control, untransformed seedlings of varieties Saratovskaya 29 were revealed. Significant differences in the growth rate, flowering and heading times were also not found when comparing the transformed lines with each other for all the indicated parameters.

In total, during the growing season of 375 wheat plants of the T1 generation, 468 samples of leaf bsamples were collected from 6 transformed lines based on the Saratovskaya 29 variety, 2 lines based on the Kazakhstanskaya 19 variety and 2 control variants. DNA was isolated to conduct the polymerase chain reaction, and, in order to exclude false negative results, the samples were analyzed three times. A total of 468 DNA samples from transformed plants were examined.

PCR for the presence of the chitinase gene insert was conducted with primers designed in such a way that it was possible to anneal simultaneously a part of the construct promoter and the subsequent chitinase gene sequence after the promoter (ACCCTGTGTTTGGTGTACTTCTGC; GCAGTAGCCCCAGGAGTAGG; amplicon size 529 bp). This design was developed to exclude false positive results by amplifying the native wheat chitinase gene. Therefore, the detected amplification product of 529 bp in size indicated the presence of the target chitinase gene in the sample.
Figure shows the results of DNA amplification isolated from transformed wheat plants. Plasmid (K+) with the chitinase gene and DNA (K-) from non-transformed wheat plants of Saratovskaya 29 variety served as controls.

The generalized screening data of transformed T1 generation wheat lines and control plants of varieties Saratovskaya 29 and Kazakhstanskaya 19 for the presence of target inserts of the chitinase gene are shown in the table below (Table).

![Screening results for the presence of the target chitinase gene. K+ - positive control (plasmid containing the chitinase gene), K- - negative control, M – DNA ladder (100 bp), 1-3, 5 – plants without the target chitinase gene, 4, 6, 7 – plants carrying the target chitinase gene.](image)

These tables show that not all lines selected for preliminary screening had the insertion of the target gene. Based on the revealed percentage, the plants of the T1 generation were divided into three groups.

The first group included plants T1 St-29№35 и St-29№33, characterized by a high degree of the insert instability. Regarding line St-29№35, it can be assumed that it was chimeric at the time of the initial analysis, or its definition as carrying the insert was erroneous, or the localization of the insert caused its complete cleavage in the T1 generation.

The second group consisted of T1 plants of the St-29№43 и Kz-19№2 lines, in which partial cleavage occurred and the stability of the insert was 79.55% and 60%, respectively. These two lines can be further studied to clarify the point of the insertion.

The third group of plants, which combined plants of the lines St-29№25, St-29№44, St-29№26 and Kz-19№1, was distinguished by the inheritance stability of the target chitinase gene in the T1 generation.

To assess the stability of the detected insert in T2 wheat transformant plants, seeds of 8 lines of transformed wheat were sown in an experimental field and 357 T1 plants were cultivated. Seeds of the following wheat lines were sown: St-29№25, St-29№44, St-29№26, Kz-19№1, which we identified as carriers of a stable insert and line St-29№43 и Kz-19№2 with partial cleavage in plants by the presence of an insert, lines St-29№35 and St-29№33 without an insert.

Total 363 leaf samples were collected during the wheat plants vegetation season in the field, followed by DNA isolation from leaf samples analysis for the presence of an insert under the same conditions as in the previous year. The reaction was carried out three times to exclude false negative results.

The screening results of T2 generation experimental plants of 8 transformed wheat lines and control plants of Kazakhstanskaya 19 and Saratovskaya 29 varieties are given in Table.

The data in Table demonstrate that further partial cleavage occurs in the lines St-29№43 и Kz-19№2 and the stability of the insert is only 76.92% and 76.6%, respectively, which suggests that for obtaining a new wheat line with target traits of resistance to fungal diseases, these lines cannot be used. In the line St-29№35 and St-29№33, which we indicated as not showing the insertion of the target chitinase gene in the T1 generation, the insertion was not detected in the T2 generation either.

In contrast to the mentioned earlier lines, the plants of the lines St-29№25, St-29№44, St-29№26 и Kz-19№1 confirmed the stability of the chitinase gene inheritance in the T2 generation. In this regard, these four lines were used in further replication in the T3 generation. The line St-29№43, which showed a partial splitting of the trait, was also taken for reproduction and analysis of the next generation.
Under the conditions of the experimental field, the 5 lines of transformed wheat of T3 generation was obtained. In total, 232 plants of the T2 generation lines St-29№25, St-29№44, St-29№26, Kz-19№1, which were identified as carriers of the stable insert and the St-29№43 line with partial cleavage in plants by the presence of the insert, were cultivated. In addition, control plants of varieties Saratovskaya 29 and Kazakhstanskaya 19 were planted as well.

The presence of an insert was determined by amplification of DNA isolated from 456 leaf samples collected from experimental plants during the growing season. The results of screening experimental plants of the T3 generation of five transformed wheat lines and control plants are given in Table.

Again, chitinase gene insertions were found in lines St-29№25, St-29№2, St-29№44 и Kz-19№2 and the stability of inheritance ranged from 80 to 96%. Further partial cleavage occurred and the stability of the insert composed only 71.4% for the St-29№43 line.

<table>
<thead>
<tr>
<th>Name of line</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saratovskaya 29 (control)</td>
<td>45</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>St-29№25</td>
<td>49</td>
<td>48</td>
<td>97,96</td>
</tr>
<tr>
<td>St-29№26</td>
<td>47</td>
<td>45</td>
<td>95,8</td>
</tr>
<tr>
<td>St-29№33</td>
<td>45</td>
<td>14</td>
<td>31,11</td>
</tr>
<tr>
<td>St-29№35</td>
<td>48</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>St-29№43</td>
<td>44</td>
<td>35</td>
<td>79,55</td>
</tr>
<tr>
<td>St-29№44</td>
<td>50</td>
<td>45</td>
<td>90,0</td>
</tr>
<tr>
<td>Kazakhstanskaya 19 (control)</td>
<td>48</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kz-19№1</td>
<td>47</td>
<td>47</td>
<td>100,0</td>
</tr>
<tr>
<td>Kz-19№2</td>
<td>45</td>
<td>27</td>
<td>60,0</td>
</tr>
</tbody>
</table>

Conclusions. The development of strategies for the host plant resistance against crop diseases is the foundation of future agricultural production. The development of technologies for rapid gene isolation, molecular labeling methods, the results of whole genome sequencing, as well as the development of knowledge of the field pathosystem are the potential for the implementation of effective and long-term programs for the creation of new varieties resistant to environmental stressors while reducing dependence on pesticides [28].

When transforming plants, an important factor is not only to obtain a transgenic plant with the desired trait, but it is also necessary that the transferred gene is expressed in the new plant and the acquired trait is inherited in generations [27].

Primary transformed regenerant plants were obtained as a result of cis-gene transfer of the chitinase gene into immature wheat germ of Saratovskaya 29 and Kazakhstanskaya 19 varieties. And primary screening of them by PCR for the presence of the target gene enabled to select 6 lines based on variety Saratovskaya 29 and 2 lines based on variety Kazakhstanskaya 19, presumably bearing an insert.

The seeds of the T1 generation were obtained from the selected regenerant plants by cultivation in the soil, which served as the material for the subsequent generations of T2 and T3.

In the field, leaf samples (plates) of the studied plants were collected to identify the lines carrying the wheat chitinase genes insertion. The presence of an insert was determined by PCR using designed primers capable of identifying the target gene. DNA amplification of 8 selected lines of St-29№25, St-29№43, St-29№44, St-29№33, St-29№26, St-29№35, Kz-19№1, Kz-19№2 revealed lines carrying the insert, lines with partial cleavage and lines characterized by a high degree of instability of the insert.

The 4 lines St-29№25, St-29№2, St-29№44 и Kz-19№2 with the stability of chitinase inheritance ranged from 80 to 96% were established as a result of PCR analysis of wheat generations T1, T2 and T3. Partial cleavage occurred and the stability of the insert was less than 80% for St-29№43 and Kz-19№2 lines. Insertions of the desired gene were not found in lines St-29№35 and St-29№33.
Thus, the lines St-29№25, St-29№44, St-29№26 and Kz-19№1were selected as promising for in-depth study of their resistance to fungal diseases and further replication.

Acknowledgements. The work was carried out within the framework of the grant funded by the Ministry of Education and Science of the Republic of Kazakhstan 2018-2020., AP05132540 “Obtaining new lines of wheat and potatoes based on a complex of innovative approaches of genetic engineering and cell technology”.

Н.П. Малахова1, Ю.А. Скиба1,2, Э.Р. Мальцева1,2, Г.А. Искахова1, Д.А. Найзабаева1, 2, Б.К. Телекбаева1, А.О. Бисенбай1, 2, К.А. Тойбаева1, Г.А. Исмагулова1*

1 КР БжФМ ГК М.А. Айтыхоны атындағы молекулалық биология және биохимия институты, Алматы, Қазақстан;
2 КР БжФМ ГК Улттық биотехнология орталығының Алматыдағы филиалы, Орталық рефераттық лабораториясы, Алматы, Қазақстан

БИОБАЛЛІСТИКАЛЫҚ ТРАНСФОРМАЦИЯДАН КЕЙІН БІДАЙ ЛИНИЯЛРАЫНА ЕНГІЗІЛГЕН ГЕНИНІҢ ТҰРАҚТЫҚ БАЛЫГЫҢ БАҒАЛАУ

Аннотация. Биобаллистика казірғі кезеңде біржақшық осиқтіктерді трансформациялауда тінімді еңдістер-дің бірі болып саналады, бірақ бұл эдіс қосқарақшылықта да сәтті қолданылуы. Баллистика әрекет қуыріл, жұқір, тұқым, картоп, қызылша, соя, жұқм жеңе басқа да қақұлар өзгеріске үшірді.

2000 жылдан бастап және реттелетін элементтерге бар әсері ғана немесе тұрақты ғенін енгізілген организмдерді қысқарту немесе интегреқе деп атауға ұсынылып, өзгертілді. Енгізілген қысқарту немесе сульфонилмочевина негізінде және жаңы жаттығу факторларынан, салмақта, тұқымдағы мүмкіндік бар, жетілуін өзгертеді.

Жұмыста қызғылт-қырық ауытуы үнемі бір жұмыс іздеімге алған жағдайға, T1, T2 және T3 тұқымына енгізілген хитиназа ғенінің тұрақтылығы зерттелді.

Хитиназа ғені Саратовская 29 және Казахстанская 19 қортыңыңқа жетілген бідай тұқымына биобаллистика трансформациялық процессіне қатысатын басқарық трансформацияланған репергенер осиқтіктері алынып, ПТР ерекшелігі құрылғының мүмкіндігі және ядро батырларға қуырғақ темір, тұқымдағы жаңы жаттығу мүмкіндігі болып табылды.

1were selected as promising for further study of their resistance to fungal diseases and further replication.

1 KR БжФМ ГК М.А. Айтхожин атындағы молекулалық биология және биохимия институты, Алматы, Қазақстан;
2 KR БжФМ ГК Улттық биотехнология орталығының Алматыдағы филиалы, Орталық рефераттық лабораториясы, Алматы, Қазақстан

BIOBALLISTIC TRANSPORTATION FROM TRANSFORMATION IS KEY TO LINE’S APPEARANCE

Abstract. The periods in which the elements enter the organism are promising, either genetically or genetically modified in place. Unlike major elements, the period of growth is promising for further research. T1, T2 and T3 lines are promising for further study of their resistance to fungal diseases and further replication.

The results of the study are promising for further study of their resistance to fungal diseases and further replication.

1 KR БжФМ ГК М.А. Айтхожин атындағы молекулалық биология және биохимия институты, Алматы, Қазақстан;
2 KR БжФМ ГК Улттық биотехнология орталығының Алматыдағы филиалы, Орталық рефераттық лабораториясы, Алматы, Қазақстан

Report of the National Academy of Sciences of the Republic of Kazakhstan

10
ОЦЕНКА СТАБИЛЬНОСТИ ВСТРОЕННОГО ГЕНА ХИТИНАЗЫ
В ЛИНИЯХ ПШЕНИЦЫ ПОСЛЕ БИОБАЛЛИСТИЧЕСКОЙ ТРАНСФОРМАЦИИ

Аннотация. Биобаллистика на сегодняшний день является одним из самых эффективных методов трансформации однодольных, но при этом также с успехом применяется на двудольных растениях. С использованием баллистики были трансформированы рис, кукуруза, табак, картофель, свекла, соя, виноград и др.

С начала 2000-х годов были предложены организмы, в геном которых были введены гены одного с ними вида или видов с собственными регуляторными элементами, с которыми они могут скрешиваться, называемые цисгенными либо интрегенными. Считается, что цисгенные растения не являются генномодифицированными, хотя они и получены методами генной инженерии. Известны цисгенные линии со с измененным составом жирных кислот в семенах и устойчивостью к гербицидам на основе сульфонилмочевины, с замедленным созреванием томатов, устойчивые к глифосату линии кукурузы. В настоящее время трансгенные технологии все чаще используются для повышения устойчивости сортов и гибридов к стрессовым факторам окружающей среды, например, к различным патогенам – вирусам, бактериям, грибам и насекомым. В качестве элементов для цисгенного биобаллистического переноса используют белки, участвующие в процессах инактивации поражения патогенами растений и кодируемые одним геном, а не семейством генов.

В растениях в ответ на инициирование патогенами происходит синтез PR-белков (pathogenesis related proteins), наиболее изученными из которых являются хитиназы и β-1,3-глюканазы. Знание точной роли отдельных PR-белков в иммунитете растений дает возможность использовать определенные специфические антигенные белки при создании трансгенных растений с повышенной устойчивостью к грибным болезням. При этом, важно не только получить растение с нужным признаком, но и закрепить в нем стабильную экспрессию перенесенного гена и наследование приобретенных признака в поколениях.

Нами проведено исследование стабильности вставки гена хитиназы в поколениях T1, T2 и T3 трансформированных линий пшеницы, полученных методом цисгенного переноса.

В результате биобаллистической трансформации гена хитиназы в незрелые зародышевые частицы сортов Саратовская 29 и Казахстанская 19 получены первичные трансформированные растения-регенеранты, скренив которых методом ПЦР на наличие целевого гена позволил отобрать предпочтительно несущие вставку 6 линий на основе сорта Саратовская 29 и 2 линии на основе сорта Казахстанская 19. Семенной материал отобранных линий-регенерантов был культивирован в почвенных условиях и получены семена поколения T1. Амплификация ДНК 8 отобранных линий Ст-29№25, Ст-29№43, Ст-29№44, Ст-29№33, Ст-29№26, Ст-29№35, Кз-19№1, Кз-19№2 со специфическими прижимами вывела линии, несущие вставку, линии с частичным расщеплением и линии, характеризующиеся большой степенью нестабильности вставки. Линии с нестабильно степенью наследования были выбракованы и не использованы в дальнейших исследованиях. Линии с частичным расщеплением были включены в следующий этап работы с целью получения T2 поколения. По результатам ПЦР анализа в линиях Ст-29№35 и Ст-29№33, не показавших в поколении T1 вставку целевого гена хитиназы, в поколении T2 так же вставки не выявили. В линиях Ст-29№43 и Кз-19№2 происходит дальнейшее частичное расщепление и стабильность вставки составила 76,92% и 76,6%, соответственно, поэтому данные линии не могут быть использованы в последующих экспериментах. Линии Ст-29№25, Ст-29 №44, Ст-29№26 и Кз-19№1 подтвердили стабильность наследования.
ген хитиназы в поколении T2. В связи с этим, эти четыре линии были использованы в дальнейшем тирировании в T3 поколении. Линия Ст-29№43, показывая частичное расщепление признака, также была нами взята для размножения и анализа следующего поколения. В условиях экспериментального поля было получено поколение T3 5 линий трансформированной пшеницы. Всего осуществлено культивирование 232 растений T2 поколения линий Ст-29№25, Ст-29№44, Ст-29№64, Кз-19№1, определенных нами как носителей стабильной вставки и линии Ст-29№43 с частичным расщеплением в растениях по наличию вставки.

Стабильное наследование гена хитиназы подтверждено в четырех линиях Ст-29№25, Ст-29№44, Ст-29№64 и Кз-19№1. Дальнейшее исследование предусматривает изучение устойчивости линий Ст-29№25, Ст-29№44, Ст-29№64 и Кз-19№1 к грибковым заболеваниям в лабораторных и полевых условиях с последующим тирированием.

Отобранные линии, показавшие низкую и среднюю степень поражаемости к грибным патогенам, могут быть использованы для создания новых сортов и при изучении взаимодействия патоген-растение.

Ключевые слова: трансформированные растения, ДНК, ген хитиназы пшеницы, стабильность вставки.

Information about authors:
Malakhova Natalya Petrovna, PhD of biology science, Head of the Plant Bioengineering Laboratory, M.A Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan; tasha.malakhova@mail.ru; https://orcid.org/0000-0001-5312-9674;
Skiba Yurii Aleksandrovich, PhD of biology science, Head of the Laboratory of Molecular Biology Almaty Branch of National Center for Biotechnology in Central Reference Laboratory (CRL); Leader Researcher of the Laboratory of Genome, M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry Almaty, Kazakhstan; yurii.skiba@gmail.com, https://orcid.org/0000-0003-4895-1473;
Maltseva Elina Romanovna, PhD candidate at al-Farabi Kazakh National University, Head of the Department of Biosafety and Biosecurity Almaty Branch of National Center for Biotechnology in Central Reference Laboratory (CRL); Researcher of the Laboratory of Genome, M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry Almaty, Kazakhstan; elina_m@inbox.ru, https://orcid.org/0000-0001-9198-695X;
Isakova Gulnur Ayupovna, PhD student of Kazakhstan National Agrarian University, Researcher of Genome Laboratory, M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry Almaty, Kazakhstan; gulek-0883@mail.ru, https://orcid.org/0000-0002-1989-9031;
Naizabayeva Dinara Adamzhankyzy, Master of Biotechnology, Junior Researcher of the Laboratory of Molecular Biology Almaty Branch of National Center for Biotechnology in Central Reference Laboratory (CRL); Junior Researcher of the Laboratory of Almaty, M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry Almaty, Kazakhstan; dinara.naizabayeva@gmail.com, http://orcid.org/0000-0002-0606-4289;
Tezekbaeva Botakoz Kulbaevna, Research of Plant Bioengineering Laboratory, M.A Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan; Kota151283@mail.ru, https://orcid.org/0000-0003-2313-9737;
Bissenbay Akerke Ongarbakyzy, PhD student of al-Farabi Kazakh National University, Researcher of Laboratory of Molecular Biology Almaty Branch of National Center for Biotechnology in Central Reference Laboratory (CRL); Junior Researcher of the Laboratory of Genome, M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry Almaty, Kazakhstan; akerke.bissenbay@gmail.com, https://orcid.org/0000-0002-7109-2534;
Toibayeva Karlygash Amirovna, PhD of biology science, Researcher of the Laboratory of Genome, M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Kazakhstan; k-toibayeva@rambler.ru, https://orcid.org/0000-0003-3611-5291;
Ismagulova Gulnara Akimzhanovna, PhD of biology science, Head of the Laboratory of Genome, M.A Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan; gulnara@mail.ru; https://orcid.org/0000-0002-2735-4939.

REFERENCES


Publication Ethics and Publication Malpractice in the journals of the National Academy of Sciences of the Republic of Kazakhstan

For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the National Academy of Sciences of the Republic of Kazakhstan implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The National Academy of Sciences of the Republic of Kazakhstan follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the originality detection service Cross Check http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the National Academy of sciences of the Republic of Kazakhstan.

The Editorial Board of the National Academy of sciences of the Republic of Kazakhstan will monitor and safeguard publishing ethics.

Правила оформления статьи для публикации в журнале смотреть на сайте:

www.nauka-nanrk.kz

ISSN 2518-1483 (Online), ISSN 2224-5227 (Print)


Редакторы: М. С. Ахметова, Д. С. Аленов, А. Ахметова

Верстка на компьютере А. М. Кульшинбаевой

Формат 60х88/8. Бумага офсетная. Печать – ризограф.
8,25 п.л. Тираж 500. Заказ 6.