ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ҰЛТТЫҚ ҒЫЛЫМ АКАДЕМИЯСЫНЫҢ

БАЯНДАМАЛАРЫ

ДОКЛАДЫ

НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК РЕСПУБЛИКИ КАЗАХСТАН

REPORTS

OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN

ЖУРНАЛ 1944 ЖЫЛДАН ШЫҒА БАСТАҒАН ЖУРНАЛ ИЗДАЕТСЯ С 1944 г. PUBLISHED SINCE 1944

Бас редактор ҚР ҰҒА академигі **М.Ж. Жұрынов**

Редакция алкасы:

хим.ғ. докторы, проф., ҚР ҰҒА академигі Әділов Ж.М., мед. ғ. докторы, проф., ҚР ҰҒА академигі Арзықұлов Ж.А., техн. ғ.докторы, проф., ҚР ҰҒА академигі Бишімбаев У.К., а.-ш.ғ.докторы, проф., ҚР ҰҒА академигі Есполов Т.И., техн. ғ.докторы, проф., ҚР ҰҒА академигі Мұтанов Г.М., физ.-мат.ғ. докторы, проф., ҚР ҰҒА академигі Өтелбаев М.О., пед. ғ. докторы, проф., ҚР ҰҒА академигі Пралиев С.Ж., геогр.ғ. докторы, проф., ҚР ҰҒА академигі Северский И.В.; тарих.ғ. докторы, проф., ҚР ҰҒА академигі Сыдыков Е.Б., физ.-мат.ғ. докторы, проф., ҚР ҰҒА академигі Тәкібаев Н.Ж., физ.-мат.ғ. докторы, проф., ҚР ҰҒА академигі Харин С.Н., тарих ғ. докторы, проф., ҚР ҰҒА корр. мүшесі Әбүсейітова М.Х., экон. ғ.докторы, проф., ҰҒА корр. мүшесі Бейсембетов И.К., биол. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі Жамбакин К.Ж., тарих ғ. докторы, проф., ҚР ҰҒА корр. мүшесі Кәрібаев Б.Б., мед. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі Локшин В.Н., геол.-мин. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі Өмірсеріков М.Ш., физ.-мат. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі Омірсеріков М.Ш., физ.-мат. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі Садыбеков М.А., хим.ғ. докторы, проф., ҚР ҰҒА корр. мүшесі Садыбеков М.А., хим.ғ. докторы, проф., ҚР ҰҒА корр. мүшесі Садыбеков М.А., хим.ғ. докторы, проф., ҚР ҰҒА корр. мүшесі Садыбеков М.А., хим.ғ. докторы, проф., ҚР ҰҒА корр. мүшесі Садыбеков М.А., хим.ғ. докторы, проф., ҚР ҰҒА корр. мүшесі Садыбеков М.А., хим.ғ. докторы, проф., ҚР ҰҒА корр. мүшесі Садыбеков М.А., хим.ғ. докторы, проф., ҚР ҰҒА корр. мүшесі Садыбеков М.А., хим.ғ. докторы, проф., ҚР ҰҒА корр. мүшесі Садыбеков М.А., хим.ғ. докторы, проф., ҚР ҰҒА корр. мүшесі Садыбеков М.И.; ҚР ҰҒА курметті мүшесі, а.-ш.ғ.докторы, проф. Омбаев А.М.

Редакция кеңесі:

Украинаның ҰҒА академигі Гончарук В.В. (Украина), Украинаның ҰҒА академигі Неклюдов И.М. (Украина), Беларусь Республикасының ҰҒА академигі Гордиенко А.И. (Беларусь), Молдова Республикасының ҰҒА академигі Дука Г. (Молдова), Тәжікстан Республикасының ҰҒА академигі Илолов М.И. (Тәжікстан), Қырғыз Республикасының ҰҒА академигі Эркебаев А.Э. (Қырғызстан), Ресей ҒА корр.мүшесі Величкин В.И. (Ресей Федерациясы); хим.ғ.докторы, профессор Марек Сикорски (Польша), тех.ғ.докторы, профессор Потапов В.А. (Украина), биол.ғ. докторы, профессор Харун Парлар (Германия), профессор Гао Энджун (КХР), филос. ғ.докторы, профессор Стефано Перни (Ұлыбритания), ғ.докторы, профессор Богуслава Леска (Польша), философия ғ. докторы, профессор Полина Прокопович (Ұлыбритания), профессор Вуйцик Вольдемар (Польша), профессор Нур Изура Удзир (Малайзия), д.х.н., профессор Нараев В.Н. (Ресей Федерациясы)

ДОКЛАДЫ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК РЕСПУБЛИКИ КАЗАХСТАН

Главный редактор академик НАН РК М.Ж. Журинов

Редакционная коллегия:

доктор хим. наук, проф., академик НАН РК С.М. Адекенов (заместитель главного редактора), доктор экон. наук, проф., академик НАН РК Ж.М. Адилов, доктор мед. наук, проф., академик НАН РК Ж.А. Арзыкулов, доктор техн. наук, проф., академик НАН РК В.К. Бишимбаев, доктор сельскохоз. наук, проф., академик НАН РК Т.И. Есполов, доктор техн. наук, проф., академик НАН РК Г.М. Мутанов, доктор физ.-мат. наук, проф., академик НАН РК М.О. Отелбаев, доктор пед. наук, проф., академик НАН РК С.Ж. Пралиев, доктор геогр. наук, проф., академик НАН РК И.В. Северский; доктор ист. наук, проф., академик НАН РК Е.Б. Сыдыков, доктор физ.-мат. наук, проф., академик НАН РК Н.Ж. Такибаев, доктор физ.-мат. наук, проф., академик НАН РК С.Н. Харин, доктор ист. наук, проф., чл.-корр. НАН РК М.Х. Абусеитова, доктор экон. наук, проф., чл.корр. НАН РК И.К. Бейсембетов, доктор биол. наук, проф., чл.-корр. НАН РК К.Ж. Жамбакин, доктор ист. наук, проф., чл.-корр. НАН РК Б.Б. Карибаев, доктор мед. наук, проф., чл.-корр. НАН РК В.Н. Локшин, доктор геол.-мин. наук, проф., чл.-корр. НАН РК М.Ш. Омирсериков, доктор физ.-мат. наук, проф., чл.-корр. НАН РК Т.С. Рамазанов, доктор физ.-мат. наук, проф., чл.-корр. НАН РК М.А. Садыбеков, доктор хим. наук, проф., чл.-корр. НАН РК М.И. Сатаев; почетный член НАН РК, доктор сельскохоз. наук, проф., А.М. Омбаев

Редакционный совет:

академик НАН Украины Гончарук В.В. (Украина), академик НАН Украины И.М. Неклюдов (Украина), академик НАН Республики Беларусь А.И.Гордиенко (Беларусь), академик НАН Республики Молдова Г. Дука (Молдова), академик НАН Республики Таджикистан М.И. Илолов (Таджикистан), член-корреспондент РАН Величкин В.И. (Россия); академик НАН Кыргызской Республики А.Э. Эркебаев (Кыргызстан), д.х.н., профессор Марек Сикорски (Польша), д.т.н., профессор В.А. Потапов (Украина), д.б.н., профессор Харун Парлар (Германия), профессор Гао Энджун (КНР), доктор философии, профессор Стефано Перни (Великобритания), доктор наук, профессор Богуслава Леска (Польша), доктор философии, профессор Полина Прокопович (Великобритания), профессор Вуйцик Вольдемар (Польша), профессор Нур Изура Удзир (Малайзия), д.х.н., профессор В.Н. Нараев (Россия)

«Доклады Национальной академии наук Республики Казахстан» ISSN 2224-5227

Собственник: Республиканское общественное объединение «Национальная академия наук Республики Казахстан» (г. Алматы)

Свидетельство о постановке на учет периодического печатного издания в Комитете информации и архивов Министерства культуры и информации Республики Казахстан №5540-Ж, выданное 01.06.2006 г.

Периодичность: 6 раз в год. Тираж: 2000 экземпляров Адрес редакции: 050010, г. Алматы, ул. Шевченко, 28, ком.218-220, тел. 272-13-19, 272-13-18

http://nauka-nanrk.kz. reports-science.kz Адрес типографии: ИП «Аруна», г.Алматы, ул.Муратбаева, 75

©Национальная академия наук Республики Казахстан, 2016 г.

REPORTS 2016 • 2

OF NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN

E d i t o r-i n-c h i e f M.Zh. Zhurinov, academician of NAS RK

Editorial board:

S.M. Adekenov (deputy editor in chief), Doctor of Chemistry, prof., academician of NAS RK; Zh.M. Adilov, Doctor of Economics, prof., academician of NAS RK; Zh.A. Arzykulov, Doctor of Medicine, prof., academician of NAS RK; V.K. Bishimbayev, Doctor of Engineering, prof., academician of NAS RK; T.I. Yespolov, Doctor of Agriculture, prof., academician of NAS RK; G.M. Mutanov, Doctor of Physics and Mathematics, prof., academician of NAS RK; M.O. Otelbayev, Doctor of Physics and Mathematics, prof., academician of NAS RK; S.Zh. Praliyev, Doctor of Education, prof., academician of NAS RK; I.V. Seversky, Doctor of Geography, prof., academician of NAS RK; Ye.B. Sydykov, Doctor of Historical Sciences, prof., academician of NAS RK; N.Zh. Takibayev, Doctor of Physics and Mathematics, prof., academician of NAS RK; S.N. Kharin, Doctor of Physics and Mathematics, prof., academician of NAS RK; M.Kh. Abuseitova, Doctor of Historical Sciences, prof., corr. member of NAS RK; I.K. Beisembetov, Doctor of Economics, prof., corr. member of NAS RK; K.Zh. Zhambakin, Doctor of Biological Sciences, prof., corr. member of NAS RK, B.B. Karibayev, Doctor of Historical Sciences, prof., corr. member of NAS RK; V.N. Lokshin, Doctor of Medicine, prof., corr. member of NAS RK; M.Sh. Omirserikov, Doctor of Geology and Mineralogy, prof., corr. member of NAS RK; T.S. Ramazanov, Doctor of Physics and Mathematics, prof., corr. member of NAS RK; M.A. Sadybekov, Doctor of Physics and Mathematics, prof., corr. member of NAS RK; M.I. Satayev, Doctor of Chemistry, prof., corr. member of NAS RK; A.M. Ombayev, Honorary Member of NAS RK, Doctor of Agriculture, prof.

Editorial staff:

V.V. Goncharuk, NAS Ukraine academician (Ukraine); I.M. Neklyudov, NAS Ukraine academician (Ukraine); A.I.Gordienko, NAS RB academician (Belarus); G. Duca, NAS Moldova academician (Moldova); M.I. Ilolov NAS Tajikistan academician (Tajikistan); A.E. Erkebayev, NAS Kyrgyzstan academician (Kyrgyzstan); V.I. Velichkin, RAS corr.member (Russia); Marek Sikorski, Doctor of Chemistry, prof. (Poland); V.A. Potapov, Doctor of Engineering, prof. (Ukraine); Harun Parlar, Doctor of Biological Sciences, prof. (Germany); Gao Endzhun, prof. (PRC); Stefano Perni, Doctor of Phylosophy, prof. (UK); Boguslava Leska, dr, prof. (Poland); Pauline Prokopovich, Doctor of Phylosophy, prof. (UK); Wójcik Waldemar, prof. (Poland), Nur Izura Udzir, prof. (Malaysia), V.N. Narayev, Doctor of Chemistry, prof. (Russia)

Reports of the National Academy of Sciences of the Republic of Kazakhstan. ISSN 2224-5227

Owner: RPA "National Academy of Sciences of the Republic of Kazakhstan" (Almaty)

The certificate of registration of a periodic printed publication in the Committee of Information and Archives of the Ministry of Culture and Information of the Republic of Kazakhstan N 5540-Ж, issued 01.06.2006

Periodicity: 6 times a year Circulation: 2000 copies

Editorial address: 28, Shevchenko str., of.219-220, Almaty, 050010, tel. 272-13-19, 272-13-18,

http://nauka-nanrk.kz / reports-science.kz

Address of printing house: ST "Aruna", 75, Muratbayev str, Almaty

© National Academy of Sciences of the Republic of Kazakhstan, 2016

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

REPORTS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN

ISSN 2224-5227

Volume 2, Number 306 (2016), 59 – 70

UDC 004.032.26

NEURONAL NETWORKS AND NEUROMORPHIC CALCULATIONS

Akhmetov B.S¹., Gorbachenko V.I².

1 Kazakh National Research Technical University named after K.I.Satpayev, 2 Penza state university, gorvi@mail.ru bakhytzhan.akhmetov.54@mail.ru

Key words: neuromorphic calculations, neuronal networks, artificial neuron, memristor.

Abstract: In details, there is an understanding of bioinspired (natural) calculations, in modern stages of neural networks, there are given three generations of neural networks, highlighted the role of network of deep architecture and adhesional (inpulsed) neuronal networks. It is presented that increasing of interest on bioinspired calculations, exactly to neuromorphic calculations and neuromorphic systems that realize models of biological neurons, it is explained by developing of artificial intellect, studying the work of the brain in artificial intellect and searching new paradigms of calculations. There is shown analysis of five degrees of modeling and imitations structure of biological nerves of the brain and building of neuromorphic processes. The main attention is given for neuromorphic processor TrueNorth. There are descriptions of the model of adhesional neuron, that realized in the processor, principles of studying networks that built on such neurons and structure of processor. There is shown the structure of programming the system Corelet in TrueNorth that was based on a new paradigm of programming. It is described principles of working of new element which called electronical scheme — memristor. There are shown perspectives of using memristors for realization synapses of artificial neurons.

УДК 004.032.26

НЕЙРОННЫЕ СЕТИ И НЕЙРОМОРФНЫЕ ВЫЧИСЛЕНИЯ

Ахметов Б.С 1 ., Горбаченко В.И 2 .

1 Казахский национальный исследовательский технический университет имени К.И.Сатпаева, bakhytzhan.akhmetov.54@mail.ru

2 Пензенский государственный университет, gorvi@mail.ru

Ключевые слова: нейроморфные вычисления, нейронные сети, искусственный нейрон, мемристор.

Аннотация. В обзоре дается понятие биоинспирированных (природных) вычислений, показана роль нейронных сетей как важнейшего инструмента биоинспирированных вычислений. Дана характеристика трех поколений нейронных сетей, подчеркнута роль сетей глубокой архитектуры и спайковых (импульсных) нейронных сетей на современном этапе развития нейронных сетей. Показано, что повышение интереса к биоинспирированным вычислениям, особенно к нейроморфным вычислениям и нейроморфным системам, реализующим модели биологических нейронов, объясняется развитием искусственного интеллекта, исследованиями работы головного мозга, попытками использования принципов работы мозга в искусственном интеллекте и поисками новых парадигм вычислений. Приведен анализ пяти уровней моделирования и имитации нервной структуры биологического мозга, приведены характерные примеры моделирования работы мозга и построения нейроморфных процессоров. Основное внимание уделено нейроморфному процессору TrueNorth. Описаны модель спайкового нейрона, реализованная в процессоре,

принципы обучения сетей, построенных на таких нейронах, и структура процессора. Представлена структура системы программирования Corelet процессора TrueNorth, основанной на новой парадигме программирования. Описан принцип работы нового элемента электронных схем – мемристора. Показана перспективность применения мемристоров для реализации синапсов искусственных нейронов.

Введение. Биоинспирированные вычисления

В настоящее время интенсивно развиваются биоинспирированные (Natural Computing — природные) вычисления [1–6]. Природные вычисления охватывают широкий спектр направления – от нейронауки (Neuroscience) [7], изучающей работу живого мозга, до вычислительного интеллекта (Computational intelligence – CI). Эти понятия в 1994 г. ввел Дж. Бездек (Bezdek J.C.) [8]. Вычислительный интеллект использует такие технологии, как нейронные сети, нечеткая логика и нечеткие нейронные сети, эволюционное моделирование, роевой интеллект и другие [9–17].

Термин "вычислительный интеллект" близок по своему значению к широко используемому в зарубежной литературе термину "soft computing" (мягкие вычисления), предложенному Л. Заде (Lotfi A. Zadeh) [18]. Мягкие вычисления представляют собой совокупность неточных, приближенных методов, основанных на обучении, нечеткой логике, генетических вычислениях, нейрокомпьютинге и вероятностных вычислениях. Основной принцип мягких вычислений – учет неточности, неопределенности для достижения большего соответствия с реальностью.

Важнейшим инструментом биоинспирированных вычислений являются искусственные нейронные сети - математические модели, основанные на идеях построения нейронов головного мозга [13-14, 19-27]. В развитии нейронных сетей можно выделить три поколения [27-28]. Нейронные сети первого поколения (с 1943 г. до середины восьмидесятых годов двадцатого века) использовали пороговый нейрон Маккаллока-Питса, имели бинарные входы и выходы и были, как правило, однослойными. Типичным представителем сетей второго поколения (середина восьмидесятых годов - 2006 г.) является многослойный персептрон (правильнее называть "многослойная сеть прямого распространения") с сигмоидальными функциями активации и небольшим числом слоев. Обучение таких сетей использует градиентные алгоритмы на основе метода обратного распространения ошибки. Такие сети могут аппроксимировать любую функцию. К сетям второго поколения относятся также сети с другой архитектурой: сети и карты Кохонена, сети Хопфилда, радиальные базисные сети и многие другие. Сети второго поколения находят широкое применение в самых различных областях. Сети третьего поколения — это сети глубокого обучения (Deep Learning) [29] и спайковые (импульсные) сети [30]. Сети глубокого обучения, началом развития которых считается публикация в 2006 г. статьи [31], содержат большое количество слоев и используют специальные методы обучения, так как при большом числе слоев методы обучения сетей второго поколения плохо работают. Сети глубокого обучения являются мощным инструментом распознавания образов. Спайковые сети, работа которых достаточно точно воспроизводит работу нейронов мозга, известны довольно давно, но только в настоящее время они стали достаточно широко использоваться для решения прикладных задач.

Повышение интереса к биоинспирированным вычислениям объясняется развитием искусственного интеллекта, исследованиями работы головного мозга, попытками использования принципов работы мозга в искусственном интеллекте и поисками новых парадигм вычислений. В искусственном интеллекте существует два альтернативных подхода к тому, как этот искусственный интеллект создавать. Один подход идет от психологии и нашего представления о том, как человек рассуждает и думает. Это направление связано с логическим выводом. Второй подход идет снизу. Так как понятно, что наш интеллект основан на взаимодействии и совместной работе многих миллиардов клеток в головном мозге, то можно попытаться смоделировать эти нервные клетки и построить из них искусственные нейронные сети, которые будут выполнять интеллектуальные задачи. Причем существует достаточно аргументированная точка зрения [32], что построить полноценный искусственный интеллект можно только воспроизводя работу головного мозга. В исследованиях работы мозга сформировалась и интенсивно развивается Вычислительная нейронаука (Computational Neuroscience) [33], изучающая функции мозга с точки зрения обработки информации структурами нервной системы. Вычислительная нейронаука исследует модели нейронов и нервных систем с учётом их физиологии и динамики. В области

решения вычислительных задач назрела необходимость разработки новых парадигм вычислений. Механическое увеличение числа процессоров суперкомпьютеров приводит к недопустимому росту энергопотребления и низкой надежности. Характерно, что по данным рейтинга TOP500 самых мощных суперкомпьютеров (www.top500.org) производительность самого мощного суперкомпьютера не растет последние 3 года и остается на уровне 33,9 PFlop/S (PFlop/S — 10^{15} операций с плавающей точкой в секунду). В современных вычислительных системах разделены процессы обработки и запоминания информации. В головном мозге и искусственных нейронных сетях такого разделения нет. Переход на новые парадигмы вычислений без разделения процессов обработки и хранения информации может дать качественный эффект в решении вычислительных задач [34]. В частности, начала развиваться идея совмещения процессов обработки и хранения информации (Memcomputing Machines) [35]. Нейронные сети являются частным случаем Меmcomputing Machines.

Основные направления нейроморфных вычислений

Перечисленные обстоятельства объясняют повышенный интерес к нейроморфным вычислениям и нейроморфным системам, реализующие модели биологических нейронов [36]. Рассмотрим некоторые современные направления нейроморфных вычислений. Попытки моделирования и имитации нервной структуры биологического мозга, как с помощью платформы традиционных вычислений, так и с помощью интегральных схем, реализованных в некоторой (аналоговой, цифровой, или смешанной аналого-цифровой) форме с аппаратными и/или программными интерфейсами можно разбить на несколько уровней [37].

- 1. Теоретический уровень моделирование на высшем уровне абстракции. Примером является проект "Bayesian Cognitive Models", основанный на байесовском моделировании когнитивной деятельности [38]. В этом подходе воспроизводятся только внешние проявления когнитивной деятельности, но не структура и функционирование мозга.
- 2. Обобщенно-алгоритмический уровень. Пример Hierarchical Temporal Memory [32, 39]. Временная Иерархическая Память (Hierarchical Temporal Memory, HTM) - это технология, имитирующая структурные и алгоритмические свойства неокортекса. Неокортекс (лат. neocortex) – новые области коры головного мозга, которые у низших млекопитающих только намечены, а у человека составляют основную часть коры. Неокортекс располагается в верхнем слое полушарий мозга, имеет толщину 2-4 миллиметра и отвечает за высшие нервные функции - сенсорное восприятие, выполнение моторных команд, осознанное мышление и речь. Временная Иерархическая Память моделирует две особенности человеческого мозга, отличающие его от современных систем распознавания образов. Первой особенностью является способность мозга учитывать роль временной составляющей в процессе зрения. Это выражается в способности относить близкие по времени видимые объекты к одной и той же категории изображений. Вторым отличием является иерархичность. Мозг иерархичен по своей структуре. Нейроны, составляющие неокортекс, находятся в иерархической связи друг с другом и образуют несколько уровней иерархии. Чем выше уровень иерархии, тем с более абстрактной информацией он работает. Следовательно, в системе распознавания образов сложные объекты должны быть иерархически связаны с более простыми их составляющими. НТМ организованы как древовидная иерархия узлов, где каждый узел реализует общие функции обучения и памяти. НТМ хранит информацию в иерархии, моделируя мир.
- 3. Уровень конкретного применения. Например, интерфейс "мозг-компьютер" (brain-computer interface), нейропротезирование. Интерфейс "мозг-компьютер" [40] система для обмена информацией между мозгом и компьютером. Исследование и моделирование мозга необходимо здесь для восприятия (прежде всего, неинвазивного) и распознавания сигналов мозга.
- 4. Уровень нейросхемы-нейросети. В мире реализуется несколько крупных проектов моделирования мозга на уровне нейросхем и нейронных сетей [41]. Один из наиболее крупных проектов выполняется фирмой IBM и рядом ведущих университетов США по заказу DARPA (Defense Advanced Research Projects Agency Управление перспективного планирования оборонных научно-исследовательских работ министерства обороны США). Это проект SyNAPSE (Systems of Neuromorphic Adaptive Plastic Scalable Electronics Системы нейроморфической адаптивной пластически масштабируемой электроники) [42]. Проект SyNAPSE это попытка

создания так называемого "когнитивного компьютера" — "мыслящего" как мозг человека, способного обучаться в процессе познания окружающего мира, делающего самостоятельные выводы и принимающего самостоятельные решения на основе этих "умозаключений". Фирма IBM также реализует собственный проект C2S2 (Cognitive Computing via Synaptronics and Supercomputing — Когнитивные вычисления с помощью синаптроники и суперкомпьютеров) [43]. В рамках этого проекта на первых этапах будут созданы нейроподобные чипы. В перспективе миссия C2S2 заключается в создании компактных когнитивных компьютеров с минимальным энергопотреблением, приближающихся по интеллекту к мозгу млекопитающего. Наиболее совершенный на сегодня нейронный процессор TrueNorth [44], реализующий спайковую нейронную сеть, создан фирмой IBM в рамках проекта SyNAPSE в 2014 г. и будет подробнее рассмотрен ниже.

Другим известным примером является проект Neurogrid лаборатории "Кремниевый мозг" ("Brains in Silicon") Стэндфордского университета [45]. В рамках проекта разработан аналого-цифровой чип [46], содержащий 65536 нейронов. Плата, содержащая 16 чипов, эмулирует 1 миллион нейронов. Нейроморфный чип создается в проекте BrainScaleS [47], реализуемом в рамках программы Евросоюза по созданию нейроморфных систем.

Фирма Qualcomm, специализирующаяся в разработке процессоров для мобильных систем, представила однокристальный нейронный процессор Qualcomm Zeroth [48]. Фирма ставит целью построить процессор, способный к самообучению, способный видеть и воспринимать мир, как люди. Создание такого процессора — это первый шаг по внедрению нейросетевых технологий в мобильные устройства.

В Китае специалистами университетов Чжэцзяна и Ханчжоу создан нейроморфный чип "Darwin", основанный на спайковой нейронной сети [49]. Чип содержит 2048 спайковых нейронов, более 4 миллионов синапсов и более 15 видов различных линий задержек. Конфигурация и топология сети полностью программируемая, а каждый нейрон и синапс обладает своим собственным набором параметров, которые определяют его функционирование.

В России также ведутся исследования в области нейроморфных систем. Так в Национальном исследовательском центре "Курчатовский институт" развивается научное направление, основанное на конвергенции нано-, био-, инфо-, когнитивных и социогуманитарных (НБИКС) наук и технологий [50].

5. Молекулярно-клеточный (биофизический) уровень. Один из первых проектов в данной области — это Blue Brain Project [51], начатый компанией IBM летом 2005 года совместно со Швейцарским федеральным технологическим институтом в Лозанне. Целью проекта является детальное моделирование отдельных нейронов и образуемых ими типовых колонок неокортекса мозга — неокортикальных колонок. В коре нейроны организованы в элементарные единицы — неокортикальные колонки, имеющие порядка 0,5 мм в диаметре и 2 мм высотой. Каждая такая колонка содержит около 10 тыс. нейронов со сложной, но упорядоченной структурой связи между собой и с внешними по отношению к колонке нейрогруппами. Модель колонки неокортекса строится на клеточном уровне исключительно по биологическим данным. В модели нейрона в рамках данного проекта учитываются различия между типами нейронов, пространственная геометрия нейронов, распределение ионных каналов по поверхности мембраны клетки и другие параметры нейронов-прототипов. Осенью 2015 г. исследователи из Федеральной политехнической школы Лозанны опубликовали работу [52], описывающую цифровую реконструкцию участка мозга крысы, содержащую 31000 нейронов, 55 слоёв клеток и 207 различных подтипов нейронов.

Проект Евросоюза Human Brain (Мозг человека) [53] должен развить уже успешно действующий проект Blue Brain Project до уровня имитации мозга человека. Основная цель проекта — создать единую открытую платформу для экспериментов с имитацией функций человеческого мозга. С ее помощью можно будет разрабатывать и новые компьютерные модели имитации мозга на молекулярном и клеточном уровне, что даст возможность смоделировать и понять биологические и медицинские процессы и тестировать новые методы лечения болезней мозга.

Нейроморфные процессоры

Рассмотрим подробнее нейронный процессор TrueNorth [44], созданный фирмой IBM в

рамках проекта SyNAPSE. Чип TrueNorth содержит 5,4 миллиарда транзисторов, что позволяет реализовать один миллион нейронов и 256 миллионов связей между нейронами — синапсов. Для организации такого количества элементов реализовано 4096 ядер в двухмерном массиве размером 64 на 64. Каждое ядро моделирует 256 нейронов. Нейронная сеть процессора представляет собой импульсную спайковую сеть [30, 54], в которой нейроны обмениваются короткими импульсами — спайками. В спайковых сетях сигнал представлен не вещественным числом, а набором импульсов (спайков) одинаковой амплитуды и длительности, а информация содержится не в амплитуде, а в интервалах между импульсами. В процессоре реализована модель биологического нейрона "интегрировать и сработать" (LIF – Leaky integrate-and-fire) с утечками, моделирующими утечку мембранного потенциала [54].

Упрощенное описание реализованной модели имеет следующий вид (фактически реализована более сложная модель) [55]. Для нейрона j и временного шага t мембранный потенциал V является результатом синаптического интегрирования и представляется суммой мембранного потенциала в предыдущем временном шаге V(t-1) и синаптического входа. Для каждого из N синапсов, синаптической вход равен сумме входных спайков синапса $\mathcal{X}_i(t)$ в текущем временном шаге, умноженных на синаптический вес \mathcal{S}_i :

$$V_{j}(t) = V_{j}(t-1) + \sum_{i=1}^{N} x_{i}(t) s_{i}$$

После интегрирования в модели LIF вычитается значение утечки λ_j от мембранного потенциала. При линейной утечке, эта константа вычитается каждый временной шаг, независимо от мембранного потенциала или синаптической активности. Эта операция реализует смещение в динамике нейронной активности

$$V_i(t) = V_i(t) - \lambda_i$$
.

Затем модель LIF сравнивает мембранный потенциал на текущем временном шаге $V_j(t)$ с порогом α_j . Если $V_j(t) \ge \alpha_j$, то нейрон "выстреливает" спайк и сбрасывает свой мембранный потенциал $V_j(t) = R_j$. В типичном случае напряжение сброса R_j равна нулю. В реализованной модели нейрона используются дополнительно стохастические синаптические входы, утечки и пороги, что обеспечивает широкие возможности моделирования динамики нейрона [55].

Модель нейрона реализована в цифровом виде и использует только простые операции, избегая сложных функциональных блоков, таких как умножение, деление, возведение в степень. Нейроны реализованы с использованием только арифметики с фиксированной запятой. Синаптические веса выражаются как 9-ти битные целые числа. Каждый нейрон может посылать сигнал к любому другому нейрону. Структура этого процессора очень подвижна: каждый нейрон имеет индивидуальную конфигурацию, каждый синапс может быть активирован или дезактивирован вне зависимости от остальных, случайные сбои и дефекты той или иной части ядра не повлияют на работу остальной системы.

Процессор построен в виде сети нейросинаптических ядер. Синаптические соединения внутри ядра реализуются матричным переключателем – кроссбаром. Межьядерные соединения реализуются сетью передачи данных. Имеются также буферы, задерживающие входящие спайки.

В процессоре используется обучение без учителя спайковых сетей на основе правиле Хебба [54, 56]. В отличие от сетей, построенных из активационных нейронов, хеббовское обучение спайковых сетей асимметрично во времени. А именно, в импульсных сетях более полно учитывается соотношение между временем появления импульса на синаптическом входе нейрона и временем генерации его собственного импульса. Максимальное приращение синаптического веса происходит в случае, когда выходной импульс генерируется немедленно после входного, а при увеличении запаздывания это приращение уменьшается. Если же, наоборот, момент генерации

выходного импульса предшествует появлению сигнала на синапсе, то вес этого синапса уменьшается, причем максимальное уменьшение соответствует минимальному времени предшествования. В нейрочипе фирмы IBM применяется аппаратная реализация зависящего от времени алгоритма обучения спайковых сетей [57], основанная на ступенчатой аппроксимации зависимости степени изменения синаптического веса от степени запаздывания выходного импульса по отношению к входному импульсу.

Но для спайковых сетей нет такого разнообразия методов обучения, как для сетей, построенных на классических активационных моделях нейронов. Известный специалист в области нейронных сетей Я. Лекун (Yann LeCun) отмечает, что спайковые сети при безусловной близости к биологическим нейронным сетям уступают классическим активационным искусственным нейронным сетям по времени решения задач распознавания образов [58].

Для процессора TrueNorth разработана новая парадигма программирования [59], так как последовательная парадигма программирования архитектуры фон Неймана является полностью непригодной для TrueNorth. В парадигме программирования TrueNorth большая сеть нейросинаптических ядер строится путем соединения наборов небольших сетей, каждая из небольших сетей, в свою очередь, может быть, построенных с помощью соединения наборов еще более мелких сетей, и так далее, пока мы не получается сеть, состоящую из одного нейросинаптического ядра, который является основным неделимым блоком.

Новая парадигма программирования состоит из следующих частей.

- 1. Corelet абстракции, которая представляет собой программу TrueNorth, показывающую только внешние входы и выходы сети и инкапсулирующую все другие детали сети нейросинаптических ядер.
- 2. Объектно-ориентированный язык Corelet для создания, композиции и декомпозиции корелетов. Основными символами языка являются нейрон, нейросинаптическое ядро и Corelet. Коннекторы составляют грамматику для композиции этих символов в программах TrueNorth. Вместе символы и грамматика являются необходимыми и достаточными для выражения любой программы TrueNorth. Эти примитивы реализуются в объектно-ориентированной методологии.
- 3. Библиотека Corelet , которая выступает в качестве постоянно растущего хранилище многоразовых корелетов, из которых можно создавать новые корелеты.
- 4. Лаборатория Corelet –это среда программирования, которая интегрируется с симулятором TrueNorth, который называется Компас, а также поддерживает все аспекты цикла программирования от проектирования до разработки, отладки и в развертывании.

Мемристоры и нейронные сети

В настоящее время большие надежды в области новых компьютерных архитектур и, в частности, нейрокомпьютерных архитектур, возлагаются на мемристоры. Еще в 1971 г. Леон Онг Чуа (Leon Ong Chua), профессор кафедры электротехники и вычислительных систем Калифорнийского университета в Беркли (University of California, Berkeley), теоретически предложил новый двухэлектродный элемент, названный "мемристор" [60]. Но только в 2008 г. фирма Hewlett-Packard реализовала мемристор в виде микросхемы. Л. Чуа выдвинул и математически обосновал гипотезу о том, что наряду с индуктивностью, конденсатором и резистором должен быть четвертый базовый элемент электрических цепей. Л. Чуа исходил из того, что должны быть соотношения, связывающие все четыре основные переменные электрических цепей: ток i, напряжение u, заряд q и магнитный поток Φ . Всего таких соотношений может быть шесть. Пять из них хорошо известны:

$$R(i) = \frac{du(i)}{di}$$
, $C(q) = \frac{dq(u)}{du}$, $L(\Phi) = \frac{d\Phi(i)}{di}$, $i(t) = \frac{dq(t)}{dt}$, $u(t) = \frac{d\Phi(i)}{dt}$,

где u(t) и i(t) — переменные напряжение и ток, q(t) и $\Phi(t)$ — заряд и магнитный поток, R(i), C(q) и $L(\Phi)$ — сопротивление, емкость и индуктивность, зависящие, соответственно, от величины тока, заряда и магнитного потока.

Л. Чуа предположил, что должно существовать шестое соотношение, связывающее магнитный поток с зарядом

$$M(q) = \frac{d\Phi(q)}{dq}$$

откуда
$$\frac{d\Phi(t)}{dt} = M(q) \frac{dq}{dt}$$
, или $u(t) = M(q)i(t)$. Так как $q(t) = \int\limits_{-\infty}^{t} i(\tau)d\tau$, то недостающий

элемент — мемристор описывается выражением

$$u(t) = M \left(\int_{-\infty}^{t} i(\tau) d\tau \right) i(t),$$

где M называется мемрезистивностью (общепринятого перевода нет, англ. memristance).

Мемрезистивность зависит от тока. Мемристор является нелинейным элементом с памятью. Современные мемристоры реализуются средствами наноэлектроники [61–62]. Мемристор можно рассматривать как управляемый резистор. Причем он может работать и как цифровой элемент памяти, находящийся в одном из двух состояний (с малым или высоким сопротивлением), и как управляемый резистор. Установка требуемых значений проводимости мемристоров может быть реализована путем подачи на мемристор импульса постоянного напряжения заданной величины и заданной длительности [62]. Очень важно, что состояние мемристора сохраняется при отключении питания.

Поэтому мемристоры перспективны в качестве запоминающих и логических элементов и управляемых резисторов. В частности, мемристоры как переменные резисторы очень перспективны в качестве синапсов нейронных сетей [62–66]. Разработаны различные схемы реализации синапсов с использование мемристоров [62–68]. В частности, мостовая схема соединения мемристоров, предложенная в [67], обеспечивает реализацию положительных и отрицательных значений весовых коэффициентов нейронной сети. В [68] предложена реализация на мемристорах весов клеточных нейронных сетей — перспективных средств обработки изображений и решения дифференциальных уравнений в частных производных. Использование мемристоров в качестве синапсов спайковых нейронных сетей обеспечивает большее соответствие биологическому прототипу, чем существующие подходы [65, 69]. Известны различные схемы аппаратной реализации обучения спайковых нейронных сетей с синапсами, реализованными на мемристорах (см., например, [70]).

Таким образом, использование мемристоров в нейронных сетях является очень перспективным направлением, основанным на новой вычислительной парадигме — совмещении процессов обработки и хранения информации (Memcomputing Machines) [35]. Нейронные сети на мемристорах реализуют аналоговую обработку информации. То есть налицо возврат к аналоговой схемотехнике, но на качественно новом уровне.

Заключение

Использование нейронных сетей, в том числе мемристорных, является перспективным направлением нейроморфных вычислений. Но для развития нейроморфных вычислений необходимо решить не только проблемы технологического характера, но и теоретические проблемы, связанные как с изучением механизмов работы нейронов головного мозга, так и с разработкой методов построения и обучения нейронных сетей.

ЛИТЕРАТУРА

- [1] de Castro L. N. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. Chapman and Hall/CRC, $2006. 696 \, p.$
 - [2] Brabazon A., O'Neill M., McGarraghy S. Natural Computing Algorithms. Springer, 2015. 554 p.
- [3] Агеев Е. В., Бендерская Е. Н., Обзор природных вычислений: основные направления и тенденции // Научнотехнические ведомости СПбГПУ. Информатика. Телекоммуникации. Управление, 2014. выпуск 2(193). С. 9–22.
- [4] Биоинспирированные методы в оптимизации / Гладков Л. А., Курейчик В. В., КУрейчик В. М., Сорокалетов П. В. М.: Физматлит, 2009. 384 с.
- [5] Карпенко А. П. Современные алгоритмы поисковой оптимизации. Алгоритмы, вдохновленные природой. М.: Изд-во МГТУ им. Н. Э. Баумана, 2014. 446 с.
 - [6] A Brief History of Neuromorphic Computing. [Электронный ресурс].
 - URL: http://knowm.org/a-brief-history-of-neuromorphic-computing/ (дата обращения: 15.01.2015).

- [7] Bear M. F., Connors B. W., Paradiso M. A. Neuroscience: Exploring the Brain. Wolters Kluwer, 2015. 1008 p.
- [8] Bezdek J. C. What is Computational Intelligence? // Computational Intelligence: Imitating Life / Editors J. Zurada, R. Marks and C. Robinson. — Piscataway: IEEE Press, 1994. — P. 1–12.
- [9] Bezdek J. C. Computational Intelligence Defined By Everyone! // Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications NATO ASI Series. — 1998, Vol. 162. — P. 10–37.
- [10] Зайченко Ю. П. Основные направления вычислительного интеллекта. Состояние и перспективы развития // Вычислительный интеллект (результаты, проблемы, перспективы): Материалы 2-й Международной научно-технической конференции (14-17 мая 2013 г., Черкассы). - Черкассы: Маклаут, 2013. — С. 37-40.
 - Engelbrecht A. P. Computational Intelligence: An Introduction. John Wiley & Sons, Ltd., 2007. 628 p.
- [12] Sumathi S., Surekha P. Computational Intelligence Paradigms: Theory & Applications using MATLAB. -CRC Press, 2010. — 851 p.
- [13] Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы. — М: Горячая линия-Телеком, 2004. — С. 452.
- [14] Рутковский Л. Методы и технологии искусственного интеллекта. — М: Горячая линия-Телеком, 2010. C. 520.
- [15] Емельянов В. В., Курейчик В. В., Курейчик В. М. Теория и практика эволюционного моделирования. – М: Физматлит, 2003. — С. 432.
- Гладков Л. А., Курейчик В. В., Курейчик В. М. Генетические алгоритмы: Учебное пособие. 2-е изд.. [16] — М: Физматлит, 2006. — С. 320.
- [17] Bonadeau E., Dorigo M., Theraulaz G. Swarm Intelligence: from Natural to Artificial Systems. — Oxford University Press, 1999. — 307 p.
- Zadeh L. A. Fuzzy Logic, Neural Networks and Soft Computing // Communication of the ACM. 1994, [18] Vol. 37. – No 3. – P. 77 – 84.
 - [19] Bishop C. M. Neural Networks for Pattern Recognition. — Oxford University Press, 1996. — 504 p.
 - [20] Du Ke-Lin, Swamy M. N. S. Neural Networks in a Softcomputing Framework. — Springer, 2010. — 566 p.
 - Haykin S. O. Neural Networks and Learning Machines. Prentice Hall, 2008. 936 p. [21]
- [22] Neural Network Design / H. B. Demuth, M. H. Beale, O. De Jesus, M. T. Hagan. — Martin Hagan, 2014. — 800 p.
 - [23] Галушкин А. И. Нейронные сети: основы теории. — М.: Горячая линия-Телеком, 2010. — 496 с.
 - [24] Осовский С. Нейронные сети для обработки информации. — М.: Финансы и статистика, 2002. — 344 с.
 - [25] Тархов Д. А. Нейросетевые модели и алгоритмы. — М.: Радиотехника, 2014. — 352 с.
 - [26] Хайкин С. Нейронные сети: полный курс. — М.: Вильямс, 2006. — 1104 с.
- нейросетей: "Глубокие нейросети". [27] поколение URL: [Электронный pecypc]. https://www.mql5.com/ru/articles/1103 (дата обращения: 15.01.2015).
- Maass W. Networks of Spiking Neurons: The Third Generation of Neural Network Models // Neural [28] Networks. – 1997, Vol. 10. — No. 9. — P. 1659–1671.
 - [29] LeCun Y., Bengio Y., Hinton G. Deep learning // Nature. — 2015, Vol. 521. — Issue 7553. — P. 436-444.
- [30] Ghosh-Dastidar S., Adeli H. Spiking Neural Networks // International Journal of Neural Systems. — 2009, Vol. 19. — No. 4. — 295–308.
- [31] Hinton G. E., Salakhutdinov R. R. Reducing the Dimensionality of Data with Neural Networks // Science. — 2006, Vol. 313. -No. 5786. — P. 504–507.
 - Хокинс Дж., Блейксли С. Об интеллекте. М.: Вильямс, 2007. 240 с. [32]
 - [33] Trappenberg T. Fundamentals of Computational Neuroscience. — Oxford University Press? 2010. — 416 p.
- [34] Indiveri G., Liu S-C. Memory and information processing in neuromorphic systems // Proceedings of the IEEE. — 2015, Vol. 103. — No 8. — P. 1379–1397.
- [35] Memcomputing NP-complete problems in polynomial time using polynomial resources and collective states / F. L. Traversa, C. Ramella, F. Bonani, M. Di Ventra // Science Advances. — 2015, Vol. 1. — No. 6. [Электронный ресурс].
 - URL: http://advances.sciencemag.org/content/advances/1/6/e1500031.full.pdf (дата обращения: 15.01.2015).
- [36] Monroe D. Neuromorphic computing gets ready for the (really) big time // Communications of ACM, 2014, vol. 57. — Issue 6. — P. 13–15.
- Lomatch S. The State of AI, Part 3: Brain Simulations and Neuromorphic Engineering. [Электронный [37] pecypc]. URL: http://www.eidolonspeak.com/Artificial_Intelligence/StateOfAI_Part3-1.html (дата обращения: 15.01.2016).
- Lee M. D., Wagenmakers E.-J. Bayesian Cognitive Modeling: A Practical Course. Cambridge University [38] Press, 2014. -
- Hawkins J., George D. Hierarchical Temporal Memory. [Электронный ресурс]. URL: http://www-[39] edlab.cs.umass.edu/cs691jj/hawkins-and-george-2006.pdf (дата обращения: 15.01.2016).
 - [40] Rao R. P. N. Brain-Computer Interfacing: An Introduction. — Cambridge University Press, 2013. — 337 p.
- [41] Проекты (обзор). [Электронный ресурс]. URL: Ошибка! Недопустимый объект гиперссылки. (дата обращения: 15.01.2016).
- DARPA SyNAPSE Program. [Электронный ресурс]. URL: www.artificialbrains.com/darpa-synapse-[42] program (дата обращения: 15.01.2016).
- IBM Seeks to Build the Computer of the Future Based on Insights from the Brain. [Электронный ресурс]. [43] URL: https://www-03.ibm.com/press/us/en/pressrelease/26123.wss (дата обращения: 15.01.2016).
- [44] A million spiking-neuron integrated circuit with a scalable communication network and interface / Merolla P. A., Arthur J. V., Alvarez-Icaza R. and more // Science. — 2014, Vol. 345. — No. 6197. — P. 668-673.

- [45] Brains in Silicon. [Электронный ресурс]. URL: http://web.stanford.edu/group/brainsinsilicon/ (дата обращения: 15.01.2016).
- [46] Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations / Benjamin B. V., Gao P., McQuinn E., Choudhary S., A R Chandrasekaran A. R., Bussat J.-M., Alvarez-Icaza R., Arthur J. V., Merolla P. A., Boahen K. // Proceedings of the IEEE. —2014, vol. 102. no 5. P.699–716.
- [47] BrainScaleS. [Электронный ресурс]. URL: https://brainscales.kip.uni-heidelberg.de/ (дата обращения: 15.01.2016).
- [48] Qualcomm Zeroth Processors official: mimicking human brain computing. [Электронный ресурс]. URL: http://www.slashgear.com/qualcomm-zeroth-processors-official-mimicking-human-brain-computing-14301263/ (дата обращения: 15.01.2016).
- [49] China Successfully Developed "Darwin", A Neuromorphic Chip Based On Spiking Neural Networks. [Электронный ресурс]. URL: http://www.ecnmag.com/news/2015/12/china-successfully-developed-darwin-neuromorphic-chip-based-spiking-neural-networks/ (дата обращения: 15.01.2016).
- [50] Демин В. А., Бурцев М. С. На пути к искусственному интеллекту // В мире науки. 2014. № 2. С. 46–53.
 - [51] Markram H. The Blue Brain Project //Nature Reviews Neuroscience, 2006, vol. 7. no 2. P. 153–160.
- [52] Reconstruction and Simulation of Neocortical Microcircuitry / Markram H. and etc. // Cell, 2015, Vol. 163. Issue 2. P. 456–492.
- [53] Human Brain Project. [Электронный ресурс]. URL: https://www.humanbrainproject.eu/ (дата обращения: 16.11.2015).
- [54] Gerstner W., Kistler W. M. Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, 2002. 496 p.
- [55] Cognitive computing building block: A versatile and efficient digital neuron model for neurosynaptic cores / Cassidy A. S., Merolla P., Arthur J. V. and more // The 2013 International Joint Conference on Neural Networks (IJCNN), 2013. [Электронный ресурс]. URL: http://www.research.ibm.com/ software/IBMResearch/multimedia/IJCNN2013.neuron-model.pdf (дата обращения: 15.01.2015).
- [56] Нейросетевое моделирование когнитивных функций мозга: обзор основных идей / А. Т. Терехин, Е. В. Будилова, Л. М. Качалова, М. П. Карпенко // Психологические исследования: электрон. журн. 2009. № 2(4). [Электронный ресурс]. URL: http://psystudy.com/files/ Neural network Terekhin.pdf (дата обращения: 16.11.2015).
- [57] A 45nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons / J. Seo, B. Brezzo, Y. Liu, B. D. Parker, S. K. Esser, R. K. Montoye, B. Rajendran, J. A. Tierno, L. Chang, D. S. Modha, D. J. Friedman // IEEE Custom Integrated Circuits Conference (CICC). 2011. No 9. P. 1–4.
- [58] LeCun Y. Comment on the IBM TrueNorth neural net chip. [Электронный ресурс].URL: https://plus.google.com/app/basic/stream/z131jvahwnz2ilme022rxx5icvbpi1dzp04 (дата обращения: 15.01.2016).
- [59] Cognitive Computing Programming Paradigm: A Corelet Language for Composing Networks of Neurosynaptic Cores / Amir A., Datta P., Risk W. P. // The 2013 International Joint Conference on Neural Networks (IJCNN), 2013. [Электронный ресурс]. URL: http://www.research.ibm.com/ software/IBMResearch/multimedia/IJCNN2013.corelet-language.pdf (дата обращения: 15.01.2016).
- [60] Chua Leon O. Memristor The Missing Circuit Element // IEEE Transactions on Circuits Theory. 1971, vol. 18. No 5. P. 507–519.
- [61] Елисеев Н. Мемристоры и кроссбары. Нанотехнологии для процессоров // Электроника: Наука, Технология, Бизнес. 2010. № 8. С. 84–89.
- [62] Tarkov M. S. Mapping Weight Matrix of a Neural Network's Layer onto Memristor Crossbar // Optical Memory and Neural Networks (Information Optics). 2015, Vol. 24. No. 2. p. 109–115.
- [63] Галушкин А. И. Мемристоры в развитии высокопроизводительной вычислительной техники // Информационные технологии. 2015, Т. 21. № 2. С. 146–155.
- [64] Johnsen G. K. An introduction to the memristor a valuable circuit element in bioelectricity and bioimpedance // Journal of Electrical Bioimpedance. 2012, vol. 3. P. 20–28.
- [65] Thomas A. Memristor-based neural networks// Journal of Physics D: Applied Physics. 2013, vol. 46. No 9. [Электронный ресурс].
 - URL http://iopscience.iop.org/article/10.1088/0022-
- <u>3727/46/9/093001/pdf;jsessionid=2D114EB9C5F3D9084B943975AECA3FD2.c3.iopscience.cld.iop.org</u> (дата обращения: 15.01.2016).
- [66] Ермолаев В. А. Вопросы применения пассивных элементов с памятью в электронных системах и нейронных сетях // Методы и устройства передачи и обработки информации. Муром: Муромский институт им. В. К. Зворыкина, 2012. Вып.14. С. 5–10.
- [67] Memristor Bridge Synapse-Based Neural Network and Its Learning / S. P. Adhikari, C. Yana, H. Kim, L. O. Chua // IEEE Transactions on Neural Networks find Learning Systems. 2012, Vol. 23. No. 9. P. 1426–1435.
- [68] Kim Y.-S., Min K.-S. Synaptic Weighting Circuits for Cellular Neural Networks // 13th International Workshop on Cellular Nanoscale Networks and Their Applications (29-31 August 2012). P. 1–6.
- [69] Hardware elementary perceptron based on polyaniline memristive devices / V. A. Demin, V. V. Erokhin, A.V. Emelyanov, S. Battistoni, G. Baldi, S. Iannotta, P. K. Kashkarov, M. V. Kovalchuk // Organic Electronics. 2015, Vol. 25. P. 16–20.
- [70] Serrano-Gotarredona T., Prodromakis T., Linares-Barranco B. A proposal for hybrid memristor-CMOS spiking neuromorphic learning systems // IEEE Circuits Systems and Magazine, 2013. Vol. 13. Issue 2. P. 74–88.

REFERENCES

- [1] de Castro L. N. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. Chapman and Hall/CRC, 2006. 696 p.
 - [2] Brabazon A., O'Neill M., McGarraghy S. Natural Computing Algorithms. Springer, 2015. 554 p.
- [3] Ageev E. V., Bendery E. N., Review of natural calculations: main directions and tendencies//Scientific and technical sheets PGSPPU. Informatics. Telecommunications. Management, 2014. release 2(193). Page 9-22.
- [4] The bioinspired methods in Optimization / Gladkov L. A., Kureychik V. V., Kureychik V. M., Sorokaletov P. V. M.: Fizmatlit, 2009. 384 pages.
- [5] Karpenko A. P. Modern algorithms of search optimization. The algorithms inspired by the nature. M.: Prod. in MGTU of N. E. Bauman, 2014. 446 pages.
 - [6] A Brief History of Neuromorphic Computing. [digital resource].
 - URL: http://knowm.org/a-brief-history-of-neuromorphic-computing/ (date of the address: 15.01.2015).
 - [7] Bear M. F., Connors B. W., Paradiso M. A. Neuroscience: Exploring the Brain. Wolters Kluwer, 2015. 1008 p.
- [8] Bezdek J. C. What is Computational Intelligence? // Computational Intelligence: Imitating Life / Editors J. Zurada, R. Marks and C. Robinson. Piscataway: IEEE Press, 1994. P. 1–12.
- [9] Bezdek J. C. Computational Intelligence Defined By Everyone! // Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications NATO ASI Series. 1998, Vol. 162. P. 10–37.
- [10] Zaychenko Yu. P. Main directions of computing intelligence. State and prospects of development//Computing intelligence (results, problems, prospects): Materials of the 2nd International scientific and technical conference (on May 14-17, 2013, Cherkassy). Cherkassy: Maklnut, 2013. Page 37-40.
 - [11] Engelbrecht A. P. Computational Intelligence: An Introduction. John Wiley & Sons, Ltd., 2007. 628 p.
- [12] Sumathi S., Surekha P. Computational Intelligence Paradigms: Theory & Applications using MATLAB. CRC Press, 2010. 851 p.
- [13] Rutkovskaya D., Pilinsky M., Rutkovsky L. Neural networks, genetic algorithms and indistinct systems. M: Hot liniya-Telecom, 2004. Page 452.
- [14] Rutkovsky L. Methods and technologies of artificial intelligence. M: Hot liniya-Telecom, 2010. Page 520.
- [15] Yemelyanov V. V., Kureychik V. V., Kureychik V. M. Theory and practice of evolutionary modeling. M: Fizmatlit, 2003. Page 432.
- [16] Gladkov L. A., Kureychik V. V., Kureychik V. M. Genetic algorithms: Manual. 2nd prod. M: Fizmatlit, 2006. — Page 320.
- [17] Bonadeau E., Dorigo M., Theraulaz G. Swarm Intelligence: from Natural to Artificial Systems. Oxford University Press, 1999. 307 p.
- [18] Zadeh L. A. Fuzzy Logic, Neural Networks and Soft Computing // Communication of the ACM. 1994, Vol. 37. No 3. P. 77 84.
 - [19] Bishop C. M. Neural Networks for Pattern Recognition. Oxford University Press, 1996. 504 p.
 - [20] Du Ke-Lin, Swamy M. N. S. Neural Networks in a Softcomputing Framework. Springer, 2010. 566 p.
 - [21] Haykin S. O. Neural Networks and Learning Machines. Prentice Hall, 2008. 936 p.
- [22] Neural Network Design / H. B. Demuth, M. H. Beale, O. De Jesus, M. T. Hagan. Martin Hagan, 2014. 800 p.
 - [23] Galushkin A. I. Neural networks: theory bases. M.: Hot Li-niya-Telecom, 2010. 496 pages.
 - [24] Osovsky S. Neural networks for information processing. M.: Finance and statistics, 2002. 344 pages.
 - [25] Tarkhov D. A. Neural network models and algorithms. M.: Radio engineering, 2014. 352 pages.
 - [26] Khaykin S. Neural networks: full course. M.: Williams, 2006. 1104 pages.
- [27] Third generation of neuronets: "Deep neuronets". [digital resource]. URL: https://www.mql5.com/ru/articles/1103 (date of the address: 15.01.2015).
- [28] Maass W. Networks of Spiking Neurons: The Third Generation of Neural Network Models // Neural Networks. 1997, Vol. 10. No. 9. P. 1659–1671.
 - [29] LeCun Y., Bengio Y., Hinton G. Deep learning // Nature. 2015, Vol. 521. Issue 7553. P. 436–444.
- [30] Ghosh-Dastidar S., Adeli H. Spiking Neural Networks // International Journal of Neural Systems. 2009, Vol. 19. No. 4. 295–308.
- [31] Hinton G. E., Salakhutdinov R. R. Reducing the Dimensionality of Data with Neural Networks // Science. 2006, Vol. 313. No. 5786. P. 504–507.
 - [32] Hawkins J., Bleyksli S. About intelligence. M.: Williams, 2007. 240 pages.
 - [33] Trappenberg T. Fundamentals of Computational Neuroscience. Oxford University Press? 2010. 416 p.
- [34] Indiveri G., Liu S-C. Memory and information processing in neuromorphic systems // Proceedings of the IEEE. 2015, Vol. 103. No 8. P. 1379–1397.
- [35] Memcomputing NP-complete problems in polynomial time using polynomial resources and collective states / F. L. Traversa, C. Ramella, F. Bonani, M. Di Ventra // Science Advances. 2015, Vol. 1. No. 6. [digital resource].
 - URL: http://advances.sciencemag.org/content/advances/1/6/e1500031.full.pdf (date of the address: 15.01.2015).
- [36] Monroe D. Neuromorphic computing gets ready for the (really) big time // Communications of ACM, 2014, rol. 57. Issue 6. P. 13–15.
- [37] Lomatch S. The State of AI, Part 3: Brain Simulations and Neuromorphic Engineering. [digital resource]. URL: http://www.eidolonspeak.com/Artificial_Intelligence/StateOfAI_Part3-1.html (date of the address: 15.01.2016).

- [38] Lee M. D., Wagenmakers E.-J. Bayesian Cognitive Modeling: A Practical Course. Cambridge University Press, 2014. 284 p.
- [39] Hawkins J., George D. Hierarchical Temporal Memory. [digital resource]. URL: http://www-edlab.cs.umass.edu/cs691jj/hawkins-and-george-2006.pdf (date of the address: 15.01.2016).
 - [40] Rao R. P. N. Brain-Computer Interfacing: An Introduction. Cambridge University Press, 2013. 337 p.
- [41] Projects (review). [digital resource]. URL: Ошибка! Недопустимый объект гиперссылки. (date of the address: 15.01.2016).
- [42] DARPA SyNAPSE Program. [digital resource]. URL: <u>www.artificialbrains.com/darpa-synapse-program</u> (date of the address: 15.01.2016).
- [43] IBM Seeks to Build the Computer of the Future Based on Insights from the Brain. [digital resource]. URL: https://www-03.ibm.com/press/us/en/pressrelease/26123.wss (date of the address: 15.01.2016).
- [44] A million spiking-neuron integrated circuit with a scalable communication network and interface / Merolla P. A., Arthur J. V., Alvarez-Icaza R. and more // Science. 2014, Vol. 345. No. 6197. P. 668–673.
- [45] Brains in Silicon. [digital resource]. URL: http://web.stanford.edu/group/brainsinsilicon/ (date of the address: 15.01.2016).
- [46] Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations / Benjamin B. V., Gao P., McQuinn E., Choudhary S., A R Chandrasekaran A. R., Bussat J.-M., Alvarez-Icaza R., Arthur J. V., Merolla P. A., Boahen K. // Proceedings of the IEEE. —2014, vol. 102. no 5. P.699–716.
- [47] BrainScaleS. [digital resource]. URL: https://brainscales.kip.uni-heidelberg.de/ (date of the address: 15.01.2016).
- [48] Qualcomm Zeroth Processors official: mimicking human brain computing. [digital resource]. URL: http://www.slashgear.com/qualcomm-zeroth-processors-official-mimicking-human-brain-computing-14301263/ (date of the address: 15.01.2016).
- [49] China Successfully Developed "Darwin", A Neuromorphic Chip Based On Spiking Neural Networks. [digital resource]. URL: http://www.ecnmag.com/news/2015/12/china-successfully-developed-darwin-neuromorphic-chip-based-spiking-neural-networks/ (date of the address: 15.01.2016).
- [50] Dyomin V. A., Burtsev M. S. On the way to artificial intelligence//In the world of science. 2014. No. 2. Page 46-53.
 - [51] Markram H. The Blue Brain Project //Nature Reviews Neuroscience, 2006, vol. 7. no 2. P. 153–160.
- [52] Reconstruction and Simulation of Neocortical Microcircuitry / Markram H. and etc. // Cell, 2015, Vol. 163. Issue 2. P. 456–492.
- [53] Human Brain Project. [digital resource]. URL: https://www.humanbrainproject.eu/ (date of the address: 16.11.2015).
- [54] Gerstner W., Kistler W. M. Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, 2002. 496 p.
- [55] Cognitive computing building block: A versatile and efficient digital neuron model for neurosynaptic cores / Cassidy A. S., Merolla P., Arthur J. V. and more // The 2013 International Joint Conference on Neural Networks (IJCNN), 2013. [digital resource]. URL: http://www.research.ibm.com/ software/IBMResearch/multimedia/IJCNN2013.neuron-model.pdf (date of the address: 15.01.2015).
- [56] Neural network modeling of cognitive functions of a brain: review of the main ideas / A. T. Terekhin, E. V. Budilova, L. M. Kachalova, M. P. Karpenko//Psychological researches: the electronic magazine 2009. No. 2(4). [digital resource]. URL: http://psystudy.com/files/Neural_network_Terekhin.pdf (date of the address: 16.11.2015).
- [57] A 45nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons / J. Seo, B. Brezzo, Y. Liu, B. D. Parker, S. K. Esser, R. K. Montoye, B. Rajendran, J. A. Tierno, L. Chang, D. S. Modha, D. J. Friedman // IEEE Custom Integrated Circuits Conference (CICC). 2011. No 9. P. 1–4.
- [58] LeCun Y. Comment on the IBM TrueNorth neural net chip. [digital resource].URL: https://plus.google.com/app/basic/stream/z131jvahwnz2ilme022rxx5icvbpi1dzp04 (date of the address: 15.01.2016).
- [59] Cognitive Computing Programming Paradigm: A Corelet Language for Composing Networks of Neurosynaptic Cores / Amir A., Datta P., Risk W. P. // The 2013 International Joint Conference on Neural Networks (IJCNN), 2013. [digital resource]. URL:http://www.research.ibm.com/ software/IBMResearch/multimedia/IJCNN2013.corelet-language.pdf (date of the address: 15.01.2016).
- [60] Chua Leon O. Memristor The Missing Circuit Element // IEEE Transactions on Circuits Theory. 1971, vol. 18. No 5. P. 507–519.
- [61] Yeliseyev N. Memristors and krossbara. Nanotechnologies for processors//Electronics: Science, Technology, Business. 2010. No. 8. Page 84-89.
- [62] Tarkov M. S. Mapping Weight Matrix of a Neural Network's Layer onto Memristor Crossbar // Optical Memory and Neural Networks (Information Optics). 2015, Vol. 24. No. 2. p. 109–115.
- [63] Galushkin A. I. Memristors in development of high-performance computer facilities//Information technologies. 2015, T. 21. No. 2. Page 146-155.
- [64] Johnsen G. K. An introduction to the memristor a valuable circuit element in bioelectricity and bioimpedance // Journal of Electrical Bioimpedance. 2012, vol. 3. P. 20–28.
- [65] Thomas A. Memristor-based neural networks// Journal of Physics D: Applied Physics. 2013, vol. 46. No 9. [digital resource].

URL http://iopscience.iop.org/article/10.1088/0022-

- 3727/46/9/093001/pdf;jsessionid=2D114EB9C5F3D9084B943975AECA3FD2.c3.iopscience.cld.iop.org (date of the address: 15.01.2016).
- Yermolaev V. A. Questions of application of passive elements with memory in electronic systems and neural [66] networks//Methods and devices of transfer and information processing. — Murom: The Murom institute of V. K. Zvorykin, 2012. - Vyp.14. — Page 5-10.
- Memristor Bridge Synapse-Based Neural Network and Its Learning / S. P. Adhikari, C. Yana, H. Kim, [67] L. O. Chua // IEEE Transactions on Neural Networks find Learning Systems. — 2012, Vol. 23. — No. 9. — P. 1426–1435.
 [68] Kim Y.-S., Min K.-S. Synaptic Weighting Circuits for Cellular Neural Networks // 13th International
- Workshop on Cellular Nanoscale Networks and Their Applications (29-31 August 2012). P. 1-6.
- Hardware elementary perceptron based on polyaniline memristive devices / V. A. Demin, V. V. Erokhin, [69] A.V. Emelyanov, S. Battistoni, G. Baldi, S. Iannotta, P. K. Kashkarov, M. V. Kovalchuk // Organic Electronics. — 2015, Vol. 25. — P. 16–20.
- Serrano-Gotarredona T., Prodromakis T., Linares-Barranco B. A proposal for hybrid memristor-CMOS [70] spiking neuromorphic learning systems // IEEE Circuits Systems and Magazine, 2013. Vol. 13. — Issue 2. — P. 74-88.

УДК 004.032.26

НЕЙРОНДЫ ЖЕЛІЛЕР ЖӘНЕ НЕЙРОМОРФТЫ ЕСЕПТЕУЛЕР

Ахметов Б.С 1 , Горбаченко В.И 2 .

1Қ.И. Сәтбаев атындағы Қазақ ұлттық техникалық зерттеу университеті, bakhytzhan.akhmetov.54@mail.ru ²Пенза мемлекеттік университеті gorvi@mail.ru

Түйін сөздер: нейроморфты есептеулер, нейронды желілер, жасанды нейрон, мемристор.

Аннотация. Шолуда биоинспирирленген (табиғи) есептеулер түсінігіне түсіндірмелер берілген, нейронды желілердің биоинспирирленген есептеулер ретіндегі маңызды аспабының ролі көрсетілген. Нейронды желілердің үш буынының сипаттамалары әрі нейронды желілердің қазіргі заманауи даму кезеңіндегі нейронды желілердің тығыз байланыстылығы (импульстық) және желілердің тереңдетілген архитектураларының рөлі айқын берілген. Биоинспирирленген есептеулерге деген, соның ішінде биологиялық нейрон модельдерін таратушы нейроморфты есептеулер және нейроморфты жүйелерге қызығушылықтың артуы көрсетілген, олар жасанды зерделердің дамуымен, бас миының жұмысын зерттеумен, жасанды зерделерде бас миының жұмысының принциптарын қолдану тәжірибелерімен және жаңа есептеу парадигмаларын іздеумен түсіндіріледі. Сонымен қатар модельдеудің бес деңгейінің талдануы және биологиялық мидың жүйке құрылымының имтитациясы, нейроморфты процессорларды құру және ми жұмысын модельдеудің сипатты мысалдары келтірілген. Негізінен көңіл TrueNorth нейроморфты процессорына бөлінген. Процессорда таратылған тығыз байланыстағы нейрондар моделі, осы нейрондар арқылы орындалатын оқып үйрету принциптары және процессор құрылымы сипатталған. TrueNorth процессорының жаңа программалау парадигмаларына негізделген Corelet программалау жүйесінің құрылымы берілген. Электронды сұлбалардың жаңа элементі - мемристорлардың жұмыс принциптары көрсетілген. Жасанды нейрондардың синапстарын тарату үшін мемристорларды қолданудың болашағы келтірілген.

Сведения об авторах

Ахметов Б.С. - Kazakh National Reserch Technical University after K.I.Satpayev, Almaty, Kazakhstan, bakhytzhan.akhmetov.54@mail.ru

Горбаченко В.И. – Penza state university, Penza, Russia, gorvi@mail.ru

Поступила 21.01.2016 г.

PUBLICATION ETHICS AND PUBLICATION MALPRACTICE IN THE JOURNALS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN

For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the National Academy of Sciences of the Republic of Kazakhstan implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The National Academy of Sciences of the Republic of Kazakhstan follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the originality detection service Cross Check http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the National Academy of sciences of the Republic of Kazakhstan

The Editorial Board of the National Academy of sciences of the Republic of Kazakhstan will monitor and safeguard publishing ethics.

Правила оформления статьи для публикации в журнале смотреть на сайте:

www:nauka-nanrk.kz

http://www.reports-science.kz/index.php/ru/

Редакторы М. С. Ахметова, Д. С. Аленов, Т.А. Апендиев Верстка на компьютере С.К. Досаевой

Подписано в печать 05.04.2016. Формат 60х881/8. Бумага офсетная. Печать – ризограф. 14,25 п.л. Тираж 2000. Заказ 2.

Национальная академия наук РК 050010, Алматы, ул. Шевченко, 28, т. 272-13-18, 272-13-19