ҚАЗАҚСТАН РЕСПУБЛИКАСЫ
ҰЛТТЫҚ ҒЫЛЫМ АКАДЕМИЯСЫНЫҢ
БАЯНДАМАЛЫРЫ

2020 • 2

Бас редакторы
х.г.д., проф., КР УГА академігі
М.Ж. Жұрынов

Редакция алқасы:
Адекенов С.М. проф., академик (Қазақстан) (бас ред. өрісібасары)
Величкін В.І. проф., корр.-мушесі (Ресей)
Вольдемар Вуйцік проф. (Польша)
Гончарук В.В. проф., академик (Украина)
Гордиенко А.І. проф., академик (Белорус)
Дука Г. проф., академик (Молдова)
Идолов М.І. проф., академик (Таежістан)
Кригер Віктор проф. (Германия)
Леска Богуслава проф. (Польша)
Локшин В.Н. проф., чл.-корр. (Қазақстан)
Нараев В.І. проф. (Ресей)
Неклюдов И.М. проф., академик (Украина)
Нур Изум Юдзер проф. (Малайзия)
Перни Стефано проф. (Ульбритания)
Потапов В.А. проф. (Украина)
Прокопович Полина проф. (Ульбритания)
Омбаев А.М. проф., корр.-мушесі (Қазақстан)
Осебаев М.О. проф., академик (Қазақстан)
Садыбеков М.А. проф., корр.-мушесі (Қазақстан)
Сатаев М.И. проф., корр.-мушесі (Қазақстан)
Северский И.В. проф., академик (Қазақстан)
Сикорски Марек проф., (Польша)
Рамазанов Т.С. проф., академик (Қазақстан)
Сатибаев Н.Ж. проф., академик (Қазақстан), бас ред. өрісібасары
Сарыбай С.Н. проф., академик (Қазақстан)
Чечин Л.М. проф., корр.-мушесі (Қазақстан)
Харун Парлар проф. (Германия)
Энджаун Гао проф. (Кытай)
Эркеева А.Э. проф., академик (Кыргызстан)

«Қазақстан Республикасының Ұлттық ғылым академиясының баяндалары»
ISSN 2518-1483 (Online),
ISSN 2224-5227 (Print)

Меніңкітеше: «Қазақстан Республикасының Ұлттық ғылым академиясы»-Республикалық қоғамдық бірлестігі (Алматы к.).
Қазақстан республикасының Мәдениет пен акпарат министрлігінің Қазақ тарих және мұрағат комитетінде 01.06.2006 ж. берілген №5540-Ж мәржіндік әкімділік жөнінен қойылу туралы құлақ.

Мержінділігі: жылына 6 рет.
Тиражы: 500 дана.

Редакцияның мекенжайы: 050010, Алматы к., Шевченко кош., 9; 219, 220 бул.; тел.: 272-13-19, 272-13-18,

© Қазақстан Республикасының Ұлттық ғылым академиясы, 2020

Доклады Национальной академии наук Республики Казахстан

ISSN 2518-1483 (Online),
ISSN 2224-5227 (Print)

Собственник: Республиканское общественное объединение «Национальная академия наук Республики Казахстан» (г. Алматы).

Свидетельство о постановке на учет периодического печатного издания в Комитете информации и архивов Министерства культуры и информации Республики Казахстан №5540-Ж, выданное 01.06.2006 г.

Периодичность: 6 раз в год.

Тираж: 500 экземпляров

Адрес редакции: 050010, г. Алматы, ул. Шевченко, 28; ком. 219, 220; тел. 272-13-19, 272-13-18,

© Национальная академия наук Республики Казахстан, 2020 г.

G.Y. Saduova, G.T. Issanova, Y.Kh. Kakimzhanov, J. Abuduwaili

1 Al-Farabi Kazakh National University, Faculty of Geography and Environmental Sciences, Almaty, Kazakhstan; 2 Research Centre of Ecology and Environment of Central Asia, Almaty, Kazakhstan; 3 Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China.

E-mail: gumiuw_092.kz@mail.ru, gul_nur.777@mail.ru, erka_7717@mail.ru, jilil@ms.xjb.ac.cn

STUDY AND MAPPING OF DEGRADATION OF THE ARALKUM DESERT

Abstract. Desertification is a land degradation in arid, semi-arid and dry sub-humid areas as a result of various factors, including climate change and human activities. The Aral Sea is called the once large, and now almost dry, salt lake, which today looks like a large salt desert. Its drying is considered one of the greatest environmental disasters of our time, because only 50 years ago it was one of the four largest lakes on our planet. In the 1990s, the western world learned about the environmental disaster of what used to be the fourth largest lake in the world - The Aral Sea. The abrupt drying of the Aral Sea led to the intensive development of desertification processes in the region and the formation of the new man-made Aralkum desert.

The main method for determining the soil degradation of the Aralkum desert is the calculation of indices. The selected methods are widely known and repeatedly applied in world practice methods for processing satellite images. So, all of the listed spectral indices are universal. The uniqueness of this technique lies in the determination of the exact ranges of values for each of the spectral indices in the identification of various indicators of desertification.

Key words: degradation, desertification, satellite images, Landsat-5, NDVI, SI, TCT.

Introduction. In the 1990s, the western world learned about the environmental disaster that occurred at the fourth largest lake in the world – the Aral Sea. The decline of the Aral Sea was called one of the worst environmental disasters of the 20th century and called “quiet Chernobyl” [1]. The sharp drying of the Aral Sea led to the intensification of desertification processes in the region and the development of the new Aralkum desert on the dried up seabed. Over the past few decades, the open bottom has become a new “hot spot” of dust and salt storms in the region. The arid lands of South Kazakhstan, Uzbekistan and Turkmenistan have always been exposed to dangerous dust storms. However, in the last thirty years of the 20th century, dust storms have shown a significant downward trend throughout the region [2].

In the arid regions of Central Asia, dust storms are observed with frequencies that are among the highest in the world [3]. The emergence of an additional vast territory subject to wind erosion, namely the anthropogenic created Aralkum desert, inevitably led to the activation of dust emission processes [4].

The water level in the Aral Sea started drastically decreasing from the 1960s onward. The reduction in the volume and area of the sea has led to significant changes in the hydrological, chemical and natural biological structure of the water [5]. The Aral sedimentary basin with an area of 70 thousand km² occupies the north-western outskirts of the Turan Plate [6]. The Aral sedimentary basin extends from the Mugodzhars mountains in the north to Sultanuizdag in the south for more than 440 km. Its width from the Aral-Kyzylkum shaft in the west to the Akkyrsko-Kumkalinsky shaft in the east is about 210 km [7]. The engineering and geological conditions of logistic center territories of Aralsk and Turkistan city’s determined by the development of loose rocks. They related with the manifestations of numerous hazardous geological processes like salinization, swamping, deflation, linear erosion, slope wash, the phenomenon of subsidence, etc. Their development conditions significantly depend on anthropogenic factor. Sand massifs are affected by active deflation processes and with the development of the territory can cover large areas [8].

Purpose of the research. The Aral Sea is a terminal salt lake in Central Asia, on the border of Kazakhstan and Uzbekistan. Since the 1960s of XX century, sea level has been rapidly dropping due to
water abstraction from the main supply rivers: Amudarya and Syrdarya. Before the shallowing, the Aral Sea was the fourth largest lake in the world. Over-abstraction of water for irrigation of agricultural land has turned the fourth largest lake-sea in the world, formerly rich in life, into a barren desert [9]. Water is a tremendous value, a national treasure. The decision of all the most actual ecological and hydrogeocological problems depends on the state of water resources [10].

Drying of the Aral Sea led to two different types of desertification. Recently dried seabed and artificial cutting of irrigated lands. As a result, a new Aralkum desert appeared in the center of the great deserts. The sandy-salt waste lies on the territory of Uzbekistan and Kazakhstan, on the northwestern extremity of the Karakum and Kyzylkum deserts. Aralkum covers an area of more than 38 thousand km² and is a powerful source of wind loss (figure 1) [11].

The Aral Sea and the Aralkum are located within the Asiatic desert belt [12]. The climate of the surroundings of Aralkum is characterized by very cold winters and very hot summers. It is assumed that the effects of the drying of the Aral Sea were associated with climatic conditions. Current climate data show only a slight shift towards a more emphasized continentality [13]. Meteorological data show that in the Middle East region, annual rainfall has increased over the past 50 years [14]. This is due to all parts of the Turan Plain, as well as to high mountains on the outskirts [15]. Directly at the remnants of the Aral Sea, and at the Aralkum, at the stations on the former islands (Barsa-Kelmes, Lazarev, Vozrozhdeniya, Tigrovni) this trend cannot be traced significantly. However, those stations mostly have been closed since the middle or the end of the 1980s. Thus, only the last 15 or 20 years of observations would have been especially worthwhile. Only the Aral station clearly indicates an increase in precipitation within the 1950s, but within the last 40 years the mean precipitation seems to be stable [16].

Materials and methods. Currently, the quantitative characteristics of models of temporary and spatial plants with remote sensing data are of great interest for the study of Earth sciences and global changes. Spectral models and indicators are being developed to increase sensitivity to plants, taking into account the effects of the atmosphere and soil.

In the table below (table 1), a list of desertification indicators is given and the possibility of determining these indicators using remote sensing data is noted.

<table>
<thead>
<tr>
<th>№</th>
<th>Desertification Indicators</th>
<th>Spectral Indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vegetation cover</td>
<td>NDVI</td>
</tr>
<tr>
<td>2</td>
<td>Soil salinization</td>
<td>SI</td>
</tr>
<tr>
<td>3</td>
<td>Water</td>
<td>TCT</td>
</tr>
</tbody>
</table>

The Normalized Difference Vegetation Index (NDVI) is one of the most widely used plant indexes, and its usefulness for satellite-based assessment and monitoring of global vegetation has been well demonstrated over the past two decades [17].

Normalized Vegetation Index NDVI is a standardized index showing the presence and condition of vegetation (relative biomass). This index uses the contrast of the characteristics of two channels from a set of multispectral raster data – the absorption of chlorophyll by the pigment in the red channel and the high reflectivity of plant materials in the infrared channel (NIR).

NDVI is often used around the world to monitor drought, monitor and forecast agricultural production, assist in forecasting fire hazard zones, and desert attack maps. NDVI is preferred for global monitoring of vegetation, as it helps to compensate for changes in lighting conditions, surface slope, exposure and other external factors. NDVI indices range from -1.0 to 1.0, where higher values relate to green vegetation and tiny ones relate to other widespread surface resources. Naked soil is indicated by NDVI values that are in contact with 0, and water bodies are characterized by negative NDVI values [18].

Different reflection in the red and infrared (IR) channels allows you to control the density and growth rate of green vegetation using the spectral reflection of solar radiation. Green leaves usually show better reflection in the near infrared wavelength range than in visible wavelength ranges. If the leaves are suppressed by water, fading or dead, they become more yellow and reflect much less in the near infrared range. Clouds, water and snow give a better reflection in the visible range than in the near infrared range, while the difference is almost zero for rocks and bare soil. NDVI processing creates a single-channel dataset that basically represents greenery. Negative values represent clouds, water and snow, and values close to zero represent rocks and bare soil.

The default documented NDVI equation:

$$\text{NDVI} = \frac{(\text{NIR} - \text{Red})}{(\text{NIR} + \text{Red})}$$

where, NIR is reflection in the near infrared region of the spectrum, RED is reflection in the red region of the spectrum. The main research method was the analysis of the normalized relative vegetation index (NDVI – Normalized Difference Vegetation Index), which was first described by B.J. Rouse in 1973 [19].

NDVI provides accessible constructive information for distinguishing and interpreting vegetation cover that is widely used in remote sensing studies [20].

Salinization of the soil is the process of enriching the soil with soluble salts, which leads to obtaining information about the soil exposed to salt. Soil salinization in irrigated areas is becoming a serious problem for agriculture. Saline soil conditions have reduced the value and productivity of large areas of land around the world [21]. Salinity usually occurs in irrigated soils due to the accumulation of soluble salts as a result of continuous use of irrigation water containing large or medium amounts of dissolved salts [22]. The main problems associated with arid and semi-arid areas are salinization and desertification. Soil salinization is the main form of land degradation in agricultural areas where information is needed on the degree and magnitude of soil salinity for better planning and implementation of effective soil reclamation programs. Irrigational evaporation of moisture from the surface or shallow depths within the profile and insufficient annual precipitation to leach salts from the rooting zone of plants contribute to the excessive accumulation of soluble salts in soils of arid and semi-arid regions, which makes such lands with minimal success [23].

Estimation of soil salinity can be applied using digital indices extracted from satellite images with different spectral bands [24]. The digital elevation model (DEM) can also be used to predict soil salinization based on the variographic morphology of the earth’s surface in order to increase the accuracy of its prediction [25]. The rapid spread of salinization of the soil mainly depends on altitude, because the terrain controls the rate of salt transfer through different layers of soil [26].

It has been proven that remote sensing has advantages in predicting soil salinity. Meanwhile, the spatial distribution of soil salinity is apparently associated with one or more variables at the same time, depending on the characteristics of the study area [27]. Researchers have developed many approaches to studying and predicting soil salinity with multiple variables using statistical analysis [28].

Sixteen different spectral salinity indices developed in numerous studies related to salt detection and soil salinity mapping were studied for all Landsat images and seven salinity indices were most commonly used (NDSI, SI 1, SI 2, SI 4, SI 9, SI 10, SI 14) taken into account in this study are given in table 2 [29].
Table 2 – The most common salinity indicators (A. Azabdaftari a, F. Sunarb, 2016)

<table>
<thead>
<tr>
<th>Salinity indices</th>
<th>Equation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalized Differential Salinity Index</td>
<td>NDSI = (\frac{(R - \text{NIR})}{(R + \text{NIR})})</td>
<td>(Khan, Rastoskuev et al. 2001)</td>
</tr>
<tr>
<td>Salinity Index 1</td>
<td>SI1 = √B × R</td>
<td>(Khan, Rastoskuev et al. 2001)</td>
</tr>
<tr>
<td>Salinity Index 2</td>
<td>SI2 = √G × R</td>
<td>(Douaoui, 2006)</td>
</tr>
<tr>
<td>Salinity Index 4</td>
<td>SI4 = √G² + R²</td>
<td>(Douaoui, 2006)</td>
</tr>
<tr>
<td>Salinity Index 9</td>
<td>SI9 = (\frac{B_6 \times B_6 \times B_6}{B_5})</td>
<td>(Bannari, Guedon et al. 2008)</td>
</tr>
<tr>
<td>Salinity Index 10</td>
<td>SI10 = (\frac{R}{\text{NIR}})</td>
<td>(Abbas, 2007)</td>
</tr>
<tr>
<td>Salinity Index 14</td>
<td>SI14 = (\frac{\text{RA} \times \text{NIR}}{g})</td>
<td>(Abbas, 2007)</td>
</tr>
</tbody>
</table>

We have used the formula from the indices that determine the salinization of the soil, as follows:

\[SI2 = \sqrt{\text{Green} \times \text{Red}} \]

Various analyzes, including remote sensing and spatial modeling using GIS, a regression model, and method validation, were used to determine the feasibility of remote sensing and a geographic information system for mapping salinity of the soil directly from the soil and indirectly from the vegetation.

Tasseled Cap Transformation (TCT) is calculated using the formula (table 3).

Table 3 – Tasseled Cap Transformation (TCT) calculation formula (Healey S.P., et al, 2005)

<table>
<thead>
<tr>
<th>Tasseled CapTransformation</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brightness</td>
<td>0.3037 × (b1) + 0.2793 × (b2) + 0.4743 × (b3) + 0.5585 × (b4) + 0.5082 × (b5) + 0.1863 × (b7)</td>
</tr>
<tr>
<td>Green</td>
<td>0.2848 × (b1) – 0.2435 × (b2) – 0.5436 × (b3) + 0.7243 × (b4) + 0.0840 × (b5) – 0.1800 × (b7)</td>
</tr>
<tr>
<td>Humidity</td>
<td>0.1509 × (b1) + 0.1973 × (b2) + 0.3279 × (b3) + 0.3406 × (b4) – 0.7112 × (b5) – 0.4572 × (b7)</td>
</tr>
</tbody>
</table>

TCT coefficients are used in the widest range of problems solved using Earth remote sensing data: from recognition of the coastline of water bodies to determination of forest disturbances [30]. This technique uses the Brightness coefficient TCT.

Results and Discussion. The selected methods are widely known and repeatedly applied in world practice methods for processing satellite images. So, all the listed spectral indices are universal, however, they are relative. The uniqueness of this technique lies in the determination of the exact ranges of values for each of the spectral indices in the identification of various indicators of desertification. This refinement was made possible thanks to field survey data. However, ground-based data were taken for one field season, therefore, the inclusion of more scientists in the calculation of ground-based survey data will allow us to more accurately determine the ranges of index values for each of the desertification indicators.

Landsat TM data for 2000 and 2008 years were taken for this work (table 4). The image has seven bands with a resolution of 30 m pixels. Image analysis was performed using ArcGIS 10.3.

Table 4 – Space imagery selection

<table>
<thead>
<tr>
<th>Image type</th>
<th>Shooting date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landsat TM5</td>
<td>07.11.2008; 07.11.2008; 07.27.2008; 07.27.2008</td>
</tr>
</tbody>
</table>

Since all the data received from the satellite is nothing more than multispectral images, to obtain the information contained in them, it is necessary to interpret the data obtained and reveal their physical meaning.

The stage of Earth remote sensing data analysis, the main task of which is the recognition and identification of objects detected in the image, is called image decryption.

For Landsat-5 images, in accordance with the process of soil degradation, salinization, and desertification, the interpretation of these channel combinations was chosen, i.e., the color combination...
7.5.3. This combination gives an image close to natural colors, but at the same time allows you to analyze the state of the atmosphere and smoke. Healthy vegetation looks bright green, grassy communities look green, bright pink areas detect open soil, brown and orange tones are typical for sparse vegetation. Dead standing vegetation looks orange, water - blue. Sand, soil and minerals can be represented by a very large number of colors and shades. This combination gives an excellent result in the analysis of deserts and desertified territories (figures 2, 3) [31].

For Landsat-5 images, the normalized differential vegetation index (NDVI) was calculated as follows:

\[
NDVI = \frac{(band4-band3)}{(band4+band3)}. \tag{3}
\]

Also, the SI formula (salinity index) for Landsat-5 images:

\[
SI2 = \sqrt{band2 \times band3} \tag{4}
\]

The change in sea water was calculated by the formula TCT (Tasseled Cap Transformation):

\[
TCT = 0.304 \times (b1) + 0.279 \times (b2) + 0.474 \times (b3) + 0.559 \times (b4) + 0.508 \times (b5) + 0.186 \times (b7), \tag{5}
\]

where, b1, b2, b3, b4, b5, b7 are the corresponding Landsat channels.

As a result, the Soil Degradation maps for 2000 and 2008 were compiled (1:2500 000) (figures 4, 5).

The results of the calculation of the two-year index are presented in the following table. As a result, the desertification process in 2008 increased by 26,871 km2 desert area compared to 2000, the bottom area was 13 849 km2, and the vegetation cover was reduced to 1175 km2. As a result, the drying of the Aral Sea, the Aralkum desert increased, and the soil degraded significantly (table 5). The quantitative indicator for 2000 and 2008 obtained from the results of calculating the index is shown in diagram (figures 6, 7).
Table 5 – Dynamics of changes in objects of the Aral Sea and its region in 2000 and 2008

<table>
<thead>
<tr>
<th>Calculated objects</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000 year</td>
</tr>
<tr>
<td>Desert</td>
<td>33 354 km²</td>
</tr>
<tr>
<td>Vegetation</td>
<td>7 375 km²</td>
</tr>
<tr>
<td>Water</td>
<td>24 428 km²</td>
</tr>
</tbody>
</table>

Conclusion. Desertification, a phenomenon related to land degradation in arid, semi-arid and arid sub-humid regions as a result of climate change and human activities, is considered one of the most serious environmental and socio-economic problems of our time. The study of its dynamics should be accompanied by a full-scale comprehensive study and ground-based route observation data. However, the observation of the underlying surface, that is, vegetation and open soil cover, as one of the main components of this complex process, is to some extent possible when using Earth remote sensing data.

This study performed several tasks related to desertification degradation. The main objectives are to increase the area of the Aralkum desert due to changes in the volume of the Aral Sea from year to year and determine the reduction of vegetation cover. Based on two-year satellite images, it is clear that the distribution of vegetation in the Aralkum desert is relatively small. For example, in 2008, the area of vegetation was reduced to 1175 km² compared with estimates of 2000. The area of sea water decreased by 13 849 km² compared with 2000. The current state of the youngest desert in the world of Aralkum is in the worst condition. Due to quantitative indicators of the process, salinization of the Aralkum desert makes it clear that the area of deserts is increasing. This is due to the fact that in 2000 the desert area was 33 354 km², and in 2008 60 225 km², that is, it increased to 26871 km². Due to the drying of sea water, some areas have degraded, and the risk of salinization is increasing. As a result of the research, the distribution of vegetation cover, the risk of degradation and the dynamics of the development of sea water were determined. And also the dynamics of changes in the objects of research is shown in the diagram and compiled, and maps of the degradation of desertification of the Aralkum in 2000 and 2008, at a scale of 1:2 500 000.
деграцияцияс распространен в засушливых, полузасушливых и сухих субгумидных районах в результате действия различных факторов, включая изменение климата и деятельность человека. Понятие «земля» в данном случае означает биопродуктивную систему, состоящую из почвы, воды, растительности, прочей биомассы, а также экологические и гидрологически процессы внутри системы. Деграцияция земель – снижение или потеря биологической и экономической продуктивности пахотных земель или пастбищ в результате землепользования. Характеризуется маленьким количеством земли, увидением растительности, снижением связанности почвы, в результате чего становится возможной быстрая ветровая эрозия.

Аральским морем называют некогда большое, а сейчас практически высокохое, соленое озеро, которое сегодня выглядит как большая соляная пустыня. Его пересыхание считается одной из самых катастрофических экологических проблем современности, хотя 50 лет назад оно входило в четверку самых больших озер нашей планеты. В 1990-х годах западный мир узнал об экологической катастрофе того, что когда-то было четвёртым по величине озером в мире - Аральским морем. Резкое высыхание Аральского мора привело к интенсивному развитию процессов опустынивания в регионе и формированию новой антропогенной пустыни Аралкум.

Реальным способом мониторинга процессов опустынивания и процессов деграцияции земель является перечень природных объектов, процессов или явлений опустынивания (индикаторов), которые определяют осуществимость контрольных наблюдений на основе данных дистанционного зондирования; сроки и сроки этих замечаний; типы космических снимков, которые распространяются свободно на регулярной и долгосрочной основе, рекомендуется их мониторинг; основной этап контроля, геоинформационная форма результатов расходов по каждому наблюдаемому показателю и динамика изменений.
Основным методом определения деградации пустыни Аралкума является расчет индексов. Выбранные методы являются широко известными и неоднократно примененными в мировой практике обработки космических снимков. Так, все перечисленные спектральные индексы являются универсальными. Уникальность же данной методики состоит в определении точных диапазонов значений по каждому из спектральных индексов при идентификации различных индикаторов опустынивания. Выполнены ключевые этапы методики космического мониторинга процессов опустынивания и деградации пустыни Аралкума: заказ космических снимков, их предварительная обработка; расчет спектральных индексов; визуальное дешифрирование; выделение необходимых диапазонов значений индексов; составление на основе значений индексов карт процессов опустынивания; верификация карт по наземным данным; анализ полученных результатов.

Ключевые слова: деградация, опустынивание, космические снимки, Landsat-5, NDVI, SI, TCT.

REFERENCES

16. Siegmeier-W. Breczie (2013). From Aral Sea to Aralkum: An Ecological Disaster or Halophytes' Paradise (in Eng.).

[31] Evdokimov S.I., S.G. Mikhalap (2015). Determining the physical meaning of the combination of Landsat imagery channels for monitoring the state of terrestrial and aquatic ecosystems (in Rus.).
Publication Ethics and Publication Malpractice in the journals of the National Academy of Sciences of the Republic of Kazakhstan

For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the National Academy of Sciences of the Republic of Kazakhstan implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The National Academy of Sciences of the Republic of Kazakhstan follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the originality detection service Cross Check http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the National Academy of sciences of the Republic of Kazakhstan.

The Editorial Board of the National Academy of sciences of the Republic of Kazakhstan will monitor and safeguard publishing ethics.